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ABSTRACT. Systems of orthogonal polynomials on the real line play an

important role in the theory of special functions [1]. They find applica-

tions in numerous problems of mathematical physics and classical analysis.

It is known, that classical polynomials have a number of properties, which

uniquely define them. Particularly, one can deduce, that they satisfy the fol-
Po

lowing recurrence: Jp = Ap, where p = ( p1 ) vector of polynomials py (),

ﬂo (7)) 0 0
k =0, 00, J — symmetric, semi-infinite matrix: J = [ <° Bioaa 0
O (651 /82 (6%)
Bk — real, a > 0, k = 0, 00, which have a three diagonal structure [2].

In Chapter 1 of our work we consider the class of polynomials with de-
scribed above recurrence, where J — is not necessarily symmetric one. The
more wide conditions are proposed for J. The subject of orthogonality for
such systems of polynomials is investigated. The corresponding theorems of
orthogonality are obtained.

Chapter 2 of the work is devoted to the solution of some symmetric
moments problem. The statement of the problem is a generalization of a
well-known moments problem on the real line [3]. The criterion for the real
case is known [3]. The generalized problem is found to be closely connected
with a semi-infinite fivediagonal matrices (we also call them Jacobi). The
criterion of solvability is proved.
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1. Let {pr(N)}32, — be set of polynomials, defined in complex plane
(pr(N) is of k-th degree ).

Let us suppose the following;:

1) Jp = Ap, where

Bo a9 0 O
Y% B a1 O
J = 0 v (o as . — semi-infinite threediagonal matrix;
0 0 v B
Br€Co €R
ar >0, k=0,00
Po
_ | N
(1.1) r=1, —  vector ofpg(A).
2

2) J? - symmetric matrix, i.e.
(1.2) (JH)* = J2

Note. All of classical polynomials obviously satisfy the conditions
(1.1)(1.2), because for them J = J*.

Theorem 1. If system {pr(A\)}32, satisfy the conditions (1.1)(1.2), then
roots of polynomials pr(\) lie on the real and the imaginary azxes in the complex
plane.

The proof of theorem immediately follows from the fact, that roots of

pn(A) are eigenvalues of cutted matrix

Bo a9 0 O
Y B a1 0

IN=] 0 m B

By
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Let A* be a zero of py(A), i.e. py(A*) =0 and let p™¥ = (po,...,pn—_1). Then we
have Jxp™ = A*p™V and therefore (Jy)%pY = (A*)2p". For (Jy)? — is symmetric,
then (\*)? is real.

Example 1.
S|
A
7 -pBi 5 0
J = 0 % Bi % , where (3 is real parameter.
0 0 % .
2 1 1
0 32 +3 0 1
J? = e 0 -2+1 0 and J? = (J2)*.
1
0 yi 0
1

par(N) = Tor(\/ A2 + 32) = cos (2k arccos v/ A2 + (3?)

M- pi sy A~ Bi N2 L 2
p2k+1(A)_ﬁT2k+l(V A2+ B )—WCOS ((2]{3 + 1) arccos \/ \? + ﬂ ),
k=0,o00,

where T,,(\) = cos (narccos A) is the Chebyshev polynomial of 1-st kind.
Evidently, the roots of py(\) lie on the real and the imaginary axes.

Example 2.
Bi L 0 0
% —p1 % 0
J = 0 % 01 % , where (- is real.
1
o o0 I .
-3+ ; 0 1 0
0 -3+ 3 0 :
J? = 1 0 -B2+1 0
0 : 0
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Put po(A) =1, p1(N) = 2(\ — Bi), we have:

par(A) = Usp (VA + (?)

5\ B
Part1(A) = \/%U%Jrl(v A2+ (?),

where Up()) = 51 “”;112 e A) is the Chebyshev polynomial of 2-nd kind.

Example 3.

0
0
3

V35

o ogh =
=3l w5
B

(8 real) yields a polynomials connected with Legendre’s polynomials pg()):

par(N) = Par(V A% 4 3?)

\_ Bi
Pokt+1(A) = \/T&mﬁ%ﬂ( VAZ+32).

Let us study now the question of orthogonality for described systems. We

denote by T;, g(A\) and U,, 3(\) polynomials of examples 1 and 2 correspondently.

Theorem 2. Let us consider a space of quadratically summable vector-

functions with a property of symmetry:

LA([-v/1 = 8% V/1 = B2 U [=|8li, |Bli];do) = {f(A) = (f1(A), f2(N)) :

1-p2 18]¢

/ (fl,fa)da( J ) + [ (fl,fa)da( J ) <500 fo=N) = AN}
—\/1-p32 —18li
where
o [ A BB - N) ) d\
dm_<—5<5“@ Y APYRV, eV e e M
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BB —(A2+ ) dA
do(\) = ( —(A2+82) BB+ i) )i|)\\\/)\2+52\/1—()\2+ﬁ2)’

A € (—i00,i00),

ge[-1,1].

We define a scalar product in L? by equality:

1-p2 |8l
(fs9)r2 = / (f17f2)d0< 5; > + / (f1,f2)d0< 5; );
i ol

where f,g € L2. then the following property of orthogonality for Ty.8(A) holds:

<(Tn,ﬁ()‘)v Tn,ﬁ(_)‘))a (Tm,ﬁ()‘)a Tm,ﬁ(_)‘)»L? =

E]

N

Vi [ TosN)
- / (Tn,g(A),Tn,ﬁ(—M)dff( Timéﬂ((—AA)) >+
e |
181 T\
+ / (Tn,ﬁ()‘)anﬂ(_)‘))da< szmﬁﬁ((_)\))‘) > N
~ I8l |
(1.3) - { 20m;  k>1,m>1

Tpm, k=1orm=1

where k,m € N; Oy — Cronecer’s symbol.

To prove the theorem one may easily rewrite (1.3) into the sum of sep-
arate addents. Then after the change of variable we use the orthogonality of
Chebyshev’s polynomials T, ().

Analogous to above is the next theorem:

Theorem 3. Let us put into consideration a space:

LA([-V/1 = 8% V/1 = B2 U [=|8li, |8li]; do) = {f(A) = (f1(A), f2(N)) :
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3

1-p2 |8l

| da< " ) + [ (f1,f2)d6< " ) <00, fa(=X) = AV}
iR Tl

dA()\)_< ot W0 M)mw AER
TVZ BB+ N+ A VA2 + 2

= S0 >\/Tﬁ2d>\

A € (—ioo,i00)

~(W ) BBHM) ) i N AR
gel-1,1]
with a scalar product
V1-p2 18|
Gaig= [ mas( 2 )+ [ (s 4
_JiE sl

where f,g € f)g Then

™

{(Un,g(A), Un,6(=A), (Um,5(A); Um,6 (=)} 2 = 5 Oman-

Note. Theorems 2,3 shows, that systems of polynomials T}, g(A), Uy, g()
form orthogonal system in a special, symmetric L?(do) spaces. Appeareance of
matrix measure is due to the fact, that J is certainly not symmetric.

These theorems admit a generalization:

Theorem 4. Consider system of polynomials {py(N)}32,,A € C, such

that
Jp = Ap,
where
0 a9 0 O
(7)) 0 a1 0
J = 0 a7 0 a9
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18 symmetric Jacobi matriz; ag > 0,k = 0,00 and

po(M)
p= p1(M)

Let p(x) be a non-negative measure on the real axis with respect to which the
system prp(N\),k = 0,1,... is orthogonal, i.e.

/ (@) pm(@)p(@)dx = Ap,

—a

where

0<a<+4o00, 4, >0, n,m=0,00. !

Consider matriz Jg as follows:

Bi 0 0 0

0 —-Bi 0 0 .
Js=J+| 0 0 Bi 0 . |=J+pi diag(l,—1,1,-1,...),
. —Bi

where B € [—a,al, f < oo. If system of polynomials {py g(N)}7lo, A € C, satisfy
the relation:

Jsps = Apg,
where
po,s(A)
p1,5(A)
Pp = .
then

Pak, = Par(V A2 + 62),

_ A—pi 2 2
Dok+1.3 = \/ﬁp%ﬂ(v A2+ 3?)

!such measure always exists (see G.Freud, [2, Theorem 1.5, p. 60]).
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and property of orthonality holds:

a—(3?

N +5 BB - M)
—/a—p32
o i) )MW P,
Pm,a(=A) ) | X | /A2 + 32
18]i
BB =) —(N+5%)
+ 4 (pn,ﬁ()‘)apn,ﬁ(_)‘)) < _()\2+52) ﬂ(ﬂ‘i‘/\l) > X
><< PN >p(\/A2+62)dA _
Pma(=A) )i | A |/ A2+ 32
= 2A,0nm, n,m =0, 0.
Note. As we’ll see, orthogonal polynomials on the real axis, poly-

nomials of a kind p, g from Theorem 4 and polynomials corresponding to an
anti-symmetric matrix J of a kind

Bi o 0 0
—Qp —ﬂ’i aq 0 .
J = 0 —Qq ﬂl (6% . s
0 0 -—as —Bi

B € R,ap > 0,k = 0,00 exhaust in fact the whole class of systems of polynomials,
satisfying (1.1)(1.2)

2. In this chapter we consider the problem of recovering the matrix
measure by its known power moments. In case of real axis, to find function
c(A\),A € R:o(A) >0, MNo(N)dX = sp,k = 0,00 (sp — fixed real) it is
necessary and sufficient for {s;}2°, to be positive, H. Hamburger, [3, Theorem
2.1.1, page 43].
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It turns out to be possible to obtain the criterion of solvability in case of
measure concentrated on the real and the imaginary axes in the complex plane
and having matrix form.

Definition (of symmetric moments problem). Consider following prob-
lem of moments:
o1(A)  o2(A)

to find matriz measure o(\) = ( o3(\) (N
3 4

>,)\€C; o) :C—=C

are continuous, 1 = 1,4:
1) a1(A) = 01(1), 04(A) = 04(A), 02(A) = a3(N);
01()\) Z 0,01()\)04()\) — 02()\)03()\) Z 0, where

(2.1) A€ RUT (T = (—ico,ic0)).

i.e. o(\) is symmetric, nonnegative defined matriz for all \ € RUT.

- /1 .
2) RL{T(/\]“, (=N)F)a(N)dA < 1 ) =5, k=0,00

(2.2) / (Akl,(—)\)kl)a()\)d}( A ) — g, k=T,

RUT

where {s;}7 o, {mi i, — fived sequences of complexr numbers;

o d\, N\e R
2 aeT

We’ll call this problem symmetric moments problem .

The more general statement of the problem is:

Definition. (of generalized symmetric moments problem). The problem
18:
G1(A)  G2(N)
a3(A)  Ga(N)
is a piecewise continuous on the real and the image awis, i = 1, 4:

to find matriz measure 6(\) = (

),AEC’;&Z-()\):C%C’

1) 6(\) is symmetric, monotonically increasing matriz function:

d(A2) 2 (A1), 2> A1, A, €R
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Ao A
(2.3) &(A\2) = 6(\1), 72 > 71 A, Ag € (—ioo, i00)

2 f (Ak,(—A)k)d&()\)< X ) — s, k=0,

2.4) Jostentam( ) = k=T,

RUT

where {sp}7 o, {mi o, are fized sequences of complex numbers. We call this
problem generalized symmetric moments problem.

Note. In the case of absolute continuity of &(\) we arive at the previous
statement. The most of results are formulated for symmetric problem but can be
easily reformed to the general form.

The next definitions are usefull:
Definition. We call a pair of sequences {s, my41}7 g, 5k € C,mp11 €

C,k = 0,00 symmetric, if holds:

S2%k+1 = M2k+1;

[l
3

Sok = Sok, Moky2 = Maky2, k

Definition.  We call a pair of sequences {sy, my11}7 ¢, sk € C,myq1 €
C,k = 0,00 positive one , if the following is correct:

S0 S1 .. Sk S0 S1 .o Sk
mip M2 . . Mk myp Mo . . Mgt
So $3 . . Sgq2 | >0,k=2[+1; So 83 . . Spya | >0,k=2]
mE M1 - - M2k Sk Sk+1 - - S2
[=0,00

The following is true
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Assertion. If there exists a nontrivial solution o(\)( o()\) # 0% ) of the
symmetric moments problem (2.1)(2.2), then pair {sy, myi1}5o, s symmetric
and positive.

Proof. Let o(\) be solution of problem (2.1)(2.2).
Consider the functional o(u,v):

where

u(N),v(\) € LARUT,oc(\)d\) =

PO = RO ¢ [ (G faad () <. 2-3) = A1)
RUT

Functional o(u,v) is obviously bilinear.
From condition (2.1) we conclude, that:

(2.5) o(u,u) >0, ue L

(2.6) o(u,v) = o(v,u), u,v € L2.
Note, that by virtue of measure o(\) support structure:
o(u, \2v) = o(Nu,v), u,v € L2

Let R,(\) = Y.7_ozxA® — be an arbitrary polynomial of n-th degree, (z €
C,n e N).
We have by using (2.5), bilinearity of o(u,v) and (2.2):

0 < 0(Ra(A), Ru(N) = 03 @A, ;N =
k=0 Jj=0

= 3" mEo (N V) = 3 (3 o V) )ms =

k,j=0 j=0 k=0

25(\) differs from zero on set of positive measure in RU T.
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( S0 S1 .. Sn
< mLmze s Ml ,(xo,...,xn)>, n=2+1
_ My Mpy1 - - Moy | — 07 0
S0 S1 P Sn
< e ,(xo,...,xn)>, n=2l.
\ Sn Sn4+1 - - S2n

From the preceeding equality follows the positivity of {sg, mp1}72,-
Next, using (2.5)(2.6) and by the equalities

— TAE T e sk, k=21 L

sk—a(/\,l)—a(l,/\)—{mk’ fh—ola [=0,00
TR — by [ sk k=200
mkﬂ_a()\’)\)_U()\’)\)_{mkﬂ, fh—og1 [=0,00

it follows the symmetry of {sy, my11};2,. This completes the proof. O

The simplest particular case, when the conditions of symmetry and posi-
tivity of {sk, miy1}50, will be apparently sufficient for existence of solution o ()
of problem (2.1)(2.2) is the case: sy = my, k = 1, 00. The conditions of symmetry
and positivity in this case are the condition of positivity of {s;}3, [3] and the

o1(N\) 0

solution of (2.1)(2.2) exists : o(\) = < 0 0

> ,01(A) > 0 with real support.

Note. Moments problem (2.1)(2.2) is equivalent to searching for bilinear

functional o(u,v) in some linear space L D Lin{1,\,\?,...}:
1) o(u,u) > 0,Yu € L.

2) o(u,v) = o(v,u),Yu,v € L.
3) o(u, \2v) = o(M\2u,v),Vu,v € L.

4) oW\, 1) = sp; o (M, N) = myy1, =0, 00
{sk}0, {mi )2, — fixed sequences of complex values.

Suppose, that solution o(A) (o # 0,A € RUT) of moments problem
(2.1)(2.2) exists. We put into correspondence for measure o(\) some fivediago-
nal symmetric matrix J and system of polynomials {p,(\)}72, orthogonal with
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respect to measure o(\). Namely, let pi(\) be as follows:

So S1 S2 . Sk
myp m2 M3 . Mgt
(2.8) pk()\) = S2 83 S4 . Sk42 5 k= 07 oo (po = 1)

1 A A2 . )\

Then for vector (pg(A), px(—A)) is correct:

S0 S1 S92 . Sk
mq mo ms3 . me+1
(PE(N)spe(=A)) = | 82 s3 sy . Sk+2 ;, k=0,00.

(L) (A —A) (A0%) . (AF, (-A)F)

I
Multiplying previous equality by a(A)( (_)\)\) ! ) I =0,k —1 and integrating we
have:
A ~ —_—
/ (pk()\),pk(—)\))a(/\)< (=) )d)\ =0, [=0,k—1, k—fixed, k=0, 00.
RUT

Sequently, the system of polynomials {p,(A)}?2,; form an orthogonal system with
respect to measure o(\):

[ eem-ea (B ) =0, k=0 kA
RUT

(generally, [ > k, but in more detail we can use (2.6) for [ < k).
Using the definition of functional o(u,v) from the proof of the preceding
assertion, we have

U(pk()‘)7pl()‘)) =0 k,0l=0,00k 7é L.

Let us calculate the norm of polynomial py()\). (px(A) € L2(RUT,o(\)dN), for
the preHilbert space L? with scalar product o(u,v))

I pe(N) I1P= o (pi(N), pr(N) = o (pr(N), Dp—1AF) = DpZio(pe(N), A*) = D1 Ay,
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k=0,00.
where
so  S1 . . Sk so S1 . . Sk
mp M2 . . Miyq mp Mg . . Miyq
A= 8 s3 .. Sgya |, k=241 A= s2 83 .. Sgy2 |, k=2L
mE Mgy - - M2k Sk Sk+1 - - S2k
[=0,00
From foregoing assertion follows Ay > 0,k = 0, 00
Put
(29) PN = e, (B2 =1

then sequence {pi(\)}32, form an orthonormal system:

o(Pr(A),pi(N)) = i, k1 =0,00.
Consider the polynomial A\?pi()), k = 0, 00. It can be expanded into linear com-
bination of polynomials po(A),p1(N), ..., Prra(A):

k2
=Y an(\) (G€Cl=0k+2)

Multiplying this equality subsequently by p,(A),n = 0,k + 2 we have:
k+2

o (Npr(N) Z&pz =&, n=0k+2.

Next, because of {pr(\)}22, orthogonahty:
e (Wpre(N), pn(V) = o (pe(A), Xpn(N) =0, n <k —2
then (we put p_1(A) = p_2(\) =0):

k42

Npe(A) = Y a(Wpe(N), pi(N)pi(A)

I=h—2

= o(APr(N), Praa(N)Prr2(A) + 0 (A Pr(A), Prr1 (M) Prgr (N)
+o(Npr(N), De(A)Pr(A) + o (N2 Pr(A), Pr—1(A))Pr—1(N)
+0 (A Pr(A), Pr—2(AN))Pr—2(A)

= apprya(N) + Brbrr1(N) + Dk (N) + Be—1Pk—1(N) + ak—apr—2(N),
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where

ap = (N Pr(N), Prr2(N))

(2.10) B = (N pr(N), Pri1 (V)

e = (N pr(N), pr(N), k=0,00 (81 =a_1=a_y=0)

and we used the o(u,v) properties (2.4), (2.5).

From here

AP\ = ag—apr—a(N) + Br_1Pk—1(N) + Yebr(\) + Brebrr1 (M) +

(2.11) +agpry2(A), k=0,00 (b1 =a_1=a_=0).

Equality (2.11) is a recurrence for rebuilding of polynomials {px(A)} and can be
written in the following way:

Jp = \2p,

where

E ﬂo (7)) 0 0 0
oy Brar 0 0
J=] a 1 72 B2 as 0 . | — symmetric fivediagonal matrix.

0 a1 B2 73 B3 ag .

AR 1
p— | A ) =—p = S0\ — 8
(212) p - ﬁQ()\) pO()\) - \/%7291()\) - \/50(50m2 — Slml)( O)\ 1)'

Without restricting of generality we can put so = 1.
So, as we know measure o()) is a solution of moments problem, we can build
fivediagonal matrix J and orthogonal system of polynomials {pi(A)}32,. In
our constructions, however, we didn’t use the o(\) explicitly, but it’s moments
{8k, M1} only.

Now, let we have a pair of sequences {sy, my11}52, which is symmetric
and positive. Let us define after (2.8)(2.9) sequences of polynomials {py ()},
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and {pp(AN)}32,- Next, by means of equalities 2)-4) of the note after the as-
sertion we define the bilinear functional o (u,v) on Lin{1,\,A2,...}. With the
aid of (2.10)(2.11)(2.12) we define coefficients {ay, Bk, V& }5e, and construct the
corresponding matrix (we call it Jacobi matrix) J.

A question appears: Is it possible with the help of J and {pi()\)}32, to
find measure o()\). We consider a particular case, when J admits extracting
of a square root with threediagonal matrix structure. In that case the solution
of moments problem will be constructed in a special form. (in fact this case is
one-dimensional). After this a basic theorem of solvability will be proved.

Theorem 5. Let the following sequence of polynomials be given : py =
1,m :Cl)\—i-b,...,pk()\) :Ck)\k—l—...,...

e >0,k=1,00,beC

and holds the relation:

Y Bo ag 0 0 . Po Po
fo i Brox O . P _y2| P
ap B1 y2 P2 az . P2 .

where

ar >0, €R,BrLeCk=0,00

For correctness of equality:

o do 0 0 . Po Po
Yo Proaa O . Py | m
0 ’3/1 /82 dg . D2 D2

for some set of complex numbers

O, Br, Yiy k=0, 00,

it is necessary and sufficient the following conditions to be satisfied:
¢, if k is even

0 or B
@) B =0 or 5, {l, if k is odd.

(&
where ¢ — some fized complex value on the unit circle, k = 0, co.
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b) yo = bi’;‘l,( ¢ from condition a) )
1

Ve = c(afy + o) + B

1 a1z ... 01 . .
——=—— = if k is even

! C1 OOy ...0K_9 _
where oy, = ags - o1 _ k=2,3,...
cg———=, if k is odd.
ajag...0E_9
/ ]‘ /
ao = _7Oé1 = a(]Cl,
c1
k—1
Br—1-j b
ﬁllc = Z(_l)JO/iJ + (_1)k+lc_? k= 07 1’ s
=0 k—1—j 1

If a) and b) are satisfied, then coefficients {dk,”yk,ﬁk} can be found as follows:

N AN IA /
75 :aky’Yk: :cak7ﬂ]€ :/Bk7k:0700

Note. The above theorem shows, that for existance of threediagonal
square root of fivediagonal matrix, the hard restrictions must fulfill: sequence
{a}32, may be arbitrary, but argument of - is strictly fixed, {y;}72, being
uniquely defined after {ag, Bk}, c1 > 0,b € C and some c € C.

Corollary 1.  If under conditions of Theorem &5 is correct: ¢ = +1,
then roots of polynomials {pr(N)}32, lie on the real and the imaginary axes in
the complex plane.

Note. For an arbitrary fivediagonal matrix the conclusion of previous
corollary is not valid.

Corollary 2.  Let moments problem (2.1)(2.2) be given. If sequence
of coefficients {an 720, {8k} 20s 1k} oy, constructed after moments pair of se-
quences {5k, Mp11}5e, (see the reasoning after deducing of polynomials py, form
and J) satisfies conditions of preceeding theorem with ¢ = 1, then the solution of
moments problem exists.

To prove this, note that threediagonal matrix is a real symmetric matrix
or have a structure of .Jg matrix from Theorem 4 in this case.
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Note, that the case ¢ = —1 in above theorem leads to an anti-symmetric
matrix
Bi ap O 0
—Q —ﬂi 1 0
J = 0 —a1 Bi as . |,06€Rap>0k=000
0 0 —ag —0i .

The following holds

Theorem 6.  Let the moments problem (2.3)(2.4) in general form be
given. For ezistance of problem’s solution o(\) (with infinite number of points of
increasing) it is necessary and sufficient for pair of sequences {sy, mypy1}52, to
be symmetric and positive.

Proof. Necessity was proved for absolutely continuous case (see Asser-
tion) and can be easily carried on general case.

Let us show sufficiency.

Let pair of sequences {sy, mi4+1}7o, be symmetric and positive. It is
required to construct solution of problem o (), satisfying conditions (2.3)(2.4).

By described above reasonings, we define sequence of polynomials
PN}, and matrix J. Let Jy be cutted matrix:

% Bo ag 0 0
Bon brov O
T — ap B1 e B2 az
N p—
0 an-3 Byn-2 YN-1 BNn-1

0 0 an—2 By_1 N

—of (N+1)x (N +1) order.
Next, obviously holds relation:

0 A
0 ZO
1
2.14 InpVH = AZpVHL - ) . where p"tH = . |;
0
Ri(N) N

R2()\) PN
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R1()N), Re(X\) — correcting polynomials (first (IV —1) rows coincide with recurrence
relation (2.12), but last have cutted form):

Ri(\) = Mpn_1(N) —an—3PN—3(\) = Br—2DN—2(N) —yn—1Pn-1(A) = Bn—1Pn (N);

Ro(A) = Mpn(N) — an—apn—a(X) — By_1Bn-1(A) — DN (N)

of degrees (N + 1) and (/N + 2) correspondingly.
Let us consider the next polynomial:

Q) = et (100 D) = ROR(-) - Ra(-N el

Now we’ll see, that points of spectrum of Jy are the points, where matrix
Q()) is degenerate.

Let A be zero of Q(\) : Ri(\) = Ra(A) = 0,| Ri(=A) |2 + | Ra(=N) |>> 0.
Then A2 is point of prime ( at least ) spectrum of Jy:

INDN(A) = NHN ()

Analogously, if A — root of Q(\): | Ri(\) | + | R2(N\) [*> 0, Ri(=)) =
Ry(—)) = 0, then A\? is point of prime ( at least ) spectrum of Jy:

INDN(=A) = NP (—A)

Let A — root of Q(A\): Ri(A) = Ra(\) = R1(—=\) = Ro(—A) = 0. In this case \?
is point of double spectrum of Jy (because matrix Jy may have not more then
double spectrum):

INDN(A) = NPn(A),  InDn(=A) = AP (=)

Let now A — arbitrary root of Q()), be different from considered above and A # 0.
Using the property of determinants, we have: Ja()), B(A) :| a(N) | + | B(A) 2> 0
— some complex numbers, depending on A:

a(A)R1(A) + BA)R1(=A) =0
a(AN)R2(A) + B(A)R2(—A) =0
and A2 is point of prime spectrum ( at least ) of Jy:

In(a(Npy(A) + BNBN (=A)) = X (a(N)pw (A) + B(N)pn (=)
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Evidently, that if A is root of Q(\), then —\ also is a root. If it is remembered,
that Q(\) is of 2N+3 degree we have:

N N
QM) = AT = 2 A+ )} = AX][(A* = A7), where A\ € C,k =0, N,
=0 =0

A — some real number.

and to any of A\; corresponds a point of spectrum of Jy matrix.
On the other hand, if A2 # 0 is eigenvalue of matrix Jy with eigenvector
a:
1
ay
d=| ay | e Nt

an
then there exist numbers «, 3 € C:

ap1(A) + Bp1(=A) = a
and therefore, from first (N-1) rows of equality (2.14) follows, that:

ap(A) + Bp(=A) =a

and hence: Q(A) = 0. (The case, when first element of @ : ag = 0 is analogous).
If A\? is double eigenvalue it is easy to see, that in this case fulfiles: Rj()\) =
Ri(—=)\) = Ry()\) = Ra(—\) = 0 and hence A\? is double root of Q(\).

Special case A = 0 is considered analogously.

Note, that fivediagonal matrix Jy can’t have more than double spectrum
because of recurrence for components of eigenvector.

S0, A1,..., AN is a set of eigenvalues (with remembered multiplicity) of
Jn and then:

Q(\) = ANX()\?), A€ R,

where X ()) is characteristic polynomial of matrix Jy.
Let Ao, ..., Ap,p < [%] — be double roots of @Q(A). Then a set of vectors
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form, generally, nonorthogonal basis in each of eagen two-dimensional subspaces,
corresponding to eigenvalue )\? of matrix Jy. (A = 0 can’t be double eigenvalue,
or then follows Jy = 0).

Next, let Api1,... A — prime roots of Q(A) 2(p+1)+ (I —p) =N +1).
Vectors

1 1
p1(Ni) P1(=Ai)
¢ = a(\;) + B(\i) )
ﬁNO\i) ﬁN(;)\i)

where
a, B ] a(\) |2 + | B(N) |2> 0, i=p+1,N

corresponds to one-dimensional eigen subspaces of Jy for eigenvalues /\12.
Applying a known theorem of the linear algebra, we have:

p N
BV = P Lin{c, &y o (P Lin{a)),
i=0 i=p+1

where HV*! is space of complex vectors of dimension N + 1, i.e. (N + 1)-
dimensional complex space is expanding into direct sum of symmetric matrix

eigen subspaces.
Denote E; = Lin{c;,¢;},i =0,p; FE; = Lin{c},i =p+1,1. Then

l
HN+1 —_ @EZ
=0

Choose in every E; orthogonal basis:

5 . G (G T2
U = iz , Uy = :»Z :*“ HCJ.” ”Cf.” ; 1=0,p
IIéi | Iéi — (&, 1ap)7ar |
lle:ll 7 fleal

p
F= (&) + Y (@) + »_ (F1)d;
— : ,

1
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Let 4; € HN*1 then for scalar product we have:

p =
SN L, C
i=0 v (
ST R ol o1 A 1 R A Sal AR A
+) (@ )7 )+
im0 la—@@Epepl e - @ Epen
l g z P
+ > F =)0 ) = Y e (@ E) (7, E)+
Sy halrmmEln sllal
a 1 > > > > C i
+ = 2 &\ G 2{(57@)(_;76%')_( A)(gj (Azy —»Z )TZ)_
i=0 | & — (¢, ||-'Z||)||5:|| | el el
L2 G G o= L > G Gi G G
(@, (G 7= =)W, &) + (&, (s 7=7) =7) (¥ (& m=) =) 1+
e et CEE T el el
Lo
1=p+1
P .

1 1 1 C; 2V /= =\T > =\
=> 1 t | (=) PHE &) (. 6)+
LT i G g PIaT Tal i
P 1

+ -

—.\

= 1 _’:’. _’E’,
RN {( Ta T @ @Ema

| & |l

+
—
D
O
SN—
—_
/\
&
D
\_/
—~
<y
D
\_./
N——
+
Ho=
™
—
&
D
N~—
~~
<y
DL
S~—
Il
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1 ‘(szcz)|2 (Tiv_'z)
p e+ Fn) T e
=Y ((Z,6), (& ¢)) ' s e I3 12116:= @, e 7 | X
» =)y b2 (C C) 1
191
=0 - %y G2 Z_(3 Sy %2
lle:1? ”Cz (Cw ||C T ) IEA Il lléi—(¢és, I ||) A Il

Let PN be the space of polynomials of degree not greater than N. Construct
mapping f : HV*1 — PN as follows :

Z=(zo,21,...,2,) € HNT L f Zmzpz \) e PV,

For linear span of polynomials p;()\) coincides with PV, then it is mapping on

PN,
Using previous equality:
P Y ST
o o L A
@ D = @O S@Aax ) fIN%) 4
k=0 k
l
ﬁ ﬁ . @) (M)
Y @, @ fIO),
2 7@)(~M)
where
L1+ |(E’z a)® _ (Eimck) _
ox () = ||Ck||2( [CAREEES 2:“) 2yll2 [EARE (%“; e ?
_ _ (C_I‘w_'kz _ _ 1 _
||5k||2||ék*(élm H;i“ ) ||Z£H ”2 ||ék*(ck7 H%H ) ||§k|| ”2

(we used, that:

)
= (&, a(M\)p" T AR +BN)DY T (=) (7, (k)P N+1(>\k)+ﬁ( RPNV (=) =

=| a(e) I (@B ) (7, PN (W) + o) BOW) (T 5™ (M) (7. 5N (= M)
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+B(Ae) () (&, BN (=) (7, BV () +
+ 180 P @ N =)@V (=M) k=p+ L)

Preceeding equality we can rewrite in following way:

O e )+ st D)
@D = [ (@@ +anon( A5

RUT

where o’y (\) is a piecewise constant matrix function (2 x 2) with jumps at points
Ak, k= 0,p:

oAk 40) = oy (M — 0) = on(Me) 5 Ak — real

oAk +10) — o'y (Mg — 10) = on(Ag) ; A\x — imaginary.

67 (A)— piecewise constant matrix function (2 x 2) with jumps at points A,
k=p+1,L:

6§\7(}\k + 0) — &EV()\]C - 0) = &N()\k) ; Ap — real
oAk +0) —6n(A —0) =65 (M) 5 A — imaginary.
ly(~00) = Bly(—00) = oy (—ioo) = By (—ioo) =0,

Consider next functional

ontu) = [ @ u-aaas (%)),

RUT

on(A) = oy (A) + o (N);

u,v € LE = {u(X): / (u()\),u(—)\))déN(/\)< uqé(—)\))\) ) < oo} D
RUT

Lin{po(\), ..., pn(A)}

Since matrix-function &y (\) satisfies conditions (2.3) from statement of moments
problem, we easily conclude, that for functional oy (u,v) properties 1)-3) from
note to assertion hold (where L = LEN in our case).

Next, because of:

k
No=3"¢pi(\), k:0<k<N — fized, & >0,& € C,i=0k— 1L
=0
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A =nopo(A) +mp1(A), m >0,m €C.
then

k k
M) =on () &pi(N), po(N) =D Gon(i(N), po(N) = & = o(AF, 1) = s,
=0 i=0
where o(u,v) - required functional:

o) = [ wya-maso( X))

RUT

&()\) — solution of moments problem, u,v € L?(d&(\));

k
=oN Z&pz ymP1(A) + mopo(N) = D &mon (Hi(A), h1(A)+
1=0

+00 N (Pi(N), Po(N)) = &7t + &l = o(AF, X) = my1.
That means, hence:
on(AF,1) = s,
on(A¥ N =mpy; 0<E<N.
Sequently, matrix function &y satisfies condition (2.4) of moments prob-

lem for 0 < k < N.
Observing that

(a1 nan) = [ ()=

RUT

and following standart arguments for components of &y (), based on a Theorems
of E. Helly, see [6, Theorem 2, p. 420, Theorem 3,p. 422], see also [4], we choose
a subsequence 6, and obtain a measure () that is a solution of our problem
(2.3),(2.4). The proof is completed. O

Note. It is possible the generalization of the moments problem, that
leads to polynomials on pencil of lines with centre at zero. Measure matrix will
be of dimension (n x n), n > 1 and the orthogonality will be as follows:

(M)

[ m00. e asoy | PO b k=0
P
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e — primitive n-th order root of unity.
P={AeC:\"eR}

{pr(A)} — system of polynomials, corresponding to n-diagonal symmetric matrix
J. Also, it is of interest using of () in spectral problems of differential operators
theory (analogue of: j%u = Lu, where L — threediagonal [5]).
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