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ON A FIVE-DIAGONAL JACOBI MATRICES AND

ORTHOGONAL POLYNOMIALS ON RAYS IN THE

COMPLEX PLANE

S. Zagorodniuk∗

Communicated by E. I. Horozov

Abstract. Systems of orthogonal polynomials on the real line play an
important role in the theory of special functions [1]. They find applica-
tions in numerous problems of mathematical physics and classical analysis.
It is known, that classical polynomials have a number of properties, which
uniquely define them. Particularly, one can deduce, that they satisfy the fol-

lowing recurrence: Jp = λp, where p =

0� p0

p1

.

1A vector of polynomials pk(λ),

k = 0,∞, J – symmetric, semi-infinite matrix: J =

0BB� β0 α0 0 0 .

α0 β1 α1 0 .

0 α1 β2 α2 .

. . . . .

1CCA,

βk – real, αk > 0, k = 0,∞, which have a three diagonal structure [2].
In Chapter 1 of our work we consider the class of polynomials with de-

scribed above recurrence, where J – is not necessarily symmetric one. The
more wide conditions are proposed for J . The subject of orthogonality for
such systems of polynomials is investigated. The corresponding theorems of
orthogonality are obtained.

Chapter 2 of the work is devoted to the solution of some symmetric
moments problem. The statement of the problem is a generalization of a
well-known moments problem on the real line [3]. The criterion for the real
case is known [3]. The generalized problem is found to be closely connected
with a semi-infinite fivediagonal matrices (we also call them Jacobi). The
criterion of solvability is proved.
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1. Let {pk(λ)}∞k=0 – be set of polynomials, defined in complex plane

(pk(λ) is of k-th degree ).

Let us suppose the following:

1) Jp = λp, where

J =













β0 α0 0 0 .

γ0 β1 α1 0 .

0 γ1 β2 α2 .

0 0 γ2 β3 .

. . . . .













– semi-infinite threediagonal matrix;

βk ∈ C, γk ∈ R

αk > 0, k = 0,∞

(1.1) p =









p0

p1

p2

.









− vector ofpk(λ).

2) J2 - symmetric matrix, i.e.

(1.2) (J2)∗ = J2.

Note. All of classical polynomials obviously satisfy the conditions

(1.1)(1.2), because for them J = J∗.

Theorem 1. If system {pk(λ)}∞k=0 satisfy the conditions (1.1)(1.2), then

roots of polynomials pk(λ) lie on the real and the imaginary axes in the complex

plane.

The proof of theorem immediately follows from the fact, that roots of

pN (λ) are eigenvalues of cutted matrix

JN =















β0 α0 0 0 .

γ0 β1 α1 0 .

0 γ1 β2 α2 .

. . . . .

. . . . βN−1















.
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Let λ∗ be a zero of pN (λ), i.e. pN (λ∗) = 0 and let pN = (p0, . . . , pN−1). Then we

have JNpN = λ∗pN and therefore (JN )2pN = (λ∗)2pN . For (JN )2 – is symmetric,

then (λ∗)2 is real.

Example 1.

J =















βi 1√
2

0 0 .
1√
2

−βi 1
2 0 .

0 1
2 βi 1

2 .

0 0 1
2 . .

. . . . .















, where β is real parameter.

J2 =















−β2 + 1
2 0 1

2
√

2
0 .

0 −β2 + 3
4 0 1

4 .
1

2
√

2
0 −β2 + 1

2 0 .

0 1
4 0 . .

. . . . .















and J2 = (J2)∗.

Put p0(λ) = 1√
2
, p1(λ) = λ− βi, from reccurency (1.1) we can find subsequently

all of pk(λ):

p2k(λ) = T2k(
√

λ2 + β2) = cos (2k arccos
√

λ2 + β2)

p2k+1(λ)=
λ − βi

√

λ2 + β2
T2k+1(

√

λ2 + β2)=
λ − βi

√

λ2 + β2
cos ((2k +1) arccos

√

λ2 + β2),

k = 0,∞,

where Tn(λ) = cos (n arccos λ) is the Chebyshev polynomial of 1-st kind.

Evidently, the roots of pk(λ) lie on the real and the imaginary axes.

Example 2.

J =













βi 1
2 0 0 .

1
2 −βi 1

2 0 .

0 1
2 βi 1

2 .

0 0 1
2 . .

. . . . .













, where β- is real.

J2 =













−β2 + 1
4 0 1

4 0 .

0 −β2 + 1
2 0 1

4 .
1
4 0 −β2 + 1

2 0 .

0 1
4 0 . .

. . . . .












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Put p0(λ) = 1, p1(λ) = 2(λ − βi), we have:

p2k(λ) = U2k(
√

λ2 + β2)

p2k+1(λ) =
λ − βi

√

λ2 + β2
U2k+1(

√

λ2 + β2),

where Un(λ) = sin ((n+1) arccos λ)√
1−λ2

is the Chebyshev polynomial of 2-nd kind.

Example 3.

J =















βi 1√
3

0 0 .
1√
3

−βi 2√
15

0 .

0 2√
15

βi 3√
35

.

0 0 . . .

. . . . .















(β real) yields a polynomials connected with Legendre’s polynomials p̂k(λ):

p2k(λ) = p̂2k(
√

λ2 + β2)

p2k+1(λ) =
λ − βi

√

λ2 + β2
p̂2k+1(

√

λ2 + β2).

Let us study now the question of orthogonality for described systems. We

denote by Tn,β(λ) and Un,β(λ) polynomials of examples 1 and 2 correspondently.

Theorem 2. Let us consider a space of quadratically summable vector-

functions with a property of symmetry:

L2
s([−

√

1 − β2,
√

1 − β2] ∪ [−|β|i, |β|i]; dσ) = {f(λ) = (f1(λ), f2(λ)) :

√
1−β2

∫

−
√

1−β2

(f1, f2)dσ

(

f1

f2

)

+

|β|i
∫

−|β|i

(f1, f2)dσ

(

f1

f2

)

< ∞, f2(−λ) = f1(λ)}

where

dσ(λ) =

(

λ2 + β2 −β(β − λi)
−β(β + λi) λ2 + β2

)

dλ

| λ |
√

λ2 + β2
√

1 − (λ2 + β2)
, λ ∈ R
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dσ(λ) =

(

β(β − λi) −(λ2 + β2)
−(λ2 + β2) β(β + λi)

)

dλ

i | λ |
√

λ2 + β2
√

1 − (λ2 + β2)
,

λ ∈ (−i∞, i∞),

β ∈ [−1, 1].

We define a scalar product in L2
s by equality:

〈f, g〉L2
s

=

√
1−β2

∫

−
√

1−β2

(f1, f2)dσ

(

g1

g2

)

+

|β|i
∫

−|β|i

(f1, f2)dσ

(

g1

g2

)

,

where f, g ∈ L2
s. then the following property of orthogonality for Tn,β(λ) holds:

〈(Tn,β(λ), Tn,β(−λ)), (Tm,β(λ), Tm,β(−λ))〉L2
s

=

=

√
1−β2

∫

−
√

1−β2

(Tn,β(λ), Tn,β(−λ))dσ

(

Tm,β(λ)
Tm,β(−λ)

)

+

+

|β|i
∫

−|β|i

(Tn,β(λ), Tn,β(−λ))dσ

(

Tm,β(λ)
Tm,β(−λ)

)

=

(1.3) =

{

π
2 δkm, k > 1,m > 1

πδkm, k = 1 or m = 1

where k,m ∈ N ; δkm – Cronecer’s symbol.

To prove the theorem one may easily rewrite (1.3) into the sum of sep-

arate addents. Then after the change of variable we use the orthogonality of

Chebyshev’s polynomials Tn(λ).

Analogous to above is the next theorem:

Theorem 3. Let us put into consideration a space:

L̂2
s([−

√

1 − β2,
√

1 − β2] ∪ [−|β|i, |β|i]; dσ̂) = {f(λ) = (f1(λ), f2(λ)) :
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√
1−β2

∫

−
√

1−β2

(f1, f2)dσ̂

(

f1

f2

)

+

|β|i
∫

−|β|i

(f1, f2)dσ̂

(

f1

f2

)

< ∞, f2(−λ) = f1(λ)}

dσ̂(λ) =

(

λ2 + β2 −β(β − λi)
−β(β + λi) λ2 + β2

)

√

1 − (λ2 + β2)dλ

| λ |
√

λ2 + β2
, λ ∈ R

dσ̂(λ) =

(

β(β − λi) −(λ2 + β2)
−(λ2 + β2) β(β + λi)

)

√

1 − (λ2 + β2)dλ

i | λ |
√

λ2 + β2
, λ ∈ (−i∞, i∞)

β ∈ [−1, 1]

with a scalar product

〈f, g〉
L̂2

s

=

√
1−β2

∫

−
√

1−β2

(f1, f2)dσ̂

(

g1

g2

)

+

|β|i
∫

−|β|i

(f1, f2)dσ̂

(

g1

g2

)

,

where f, g ∈ L̂2
s. Then

〈(Un,β(λ), Un,β(−λ)), (Um,β(λ), Um,β(−λ))〉
L̂2

s

=
π

2
δmn.

Note. Theorems 2,3 shows, that systems of polynomials Tn,β(λ), Un,β(λ)

form orthogonal system in a special, symmetric L2(dσ) spaces. Appeareance of

matrix measure is due to the fact, that J is certainly not symmetric.

These theorems admit a generalization:

Theorem 4. Consider system of polynomials {pk(λ)}∞k=1, λ ∈ C, such

that

Jp = λp,

where

J =













0 α0 0 0 .

α0 0 α1 0 .

0 α1 0 α2 .

0 0 α2 . .

. . . . .












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is symmetric Jacobi matrix; αk > 0, k = 0,∞ and

p =





p0(λ)
p1(λ)

.



 .

Let ρ(x) be a non-negative measure on the real axis with respect to which the

system pk(λ), k = 0, 1, . . . is orthogonal, i.e.

∫ a

−a

pn(x)pm(x)ρ(x)dx = Anδnm,

where

0 < a ≤ +∞, An > 0, n,m = 0,∞. 1

Consider matrix Jβ as follows:

Jβ = J +













βi 0 0 0 .

0 −βi 0 0 .

0 0 βi 0 .

. . . −βi .

. . . . .













= J + βi diag(1,−1, 1,−1, . . .),

where β ∈ [−a, a], β < ∞. If system of polynomials {pn,β(λ)}∞n=0, λ ∈ C, satisfy

the relation:

Jβpβ = λpβ,

where

pβ =













p0,β(λ)
p1,β(λ)

.

.

.













then

p2k,β = p2k(
√

λ2 + β2),

p2k+1,β =
λ − βi

√

λ2 + β2
p2k+1(

√

λ2 + β2)

1such measure always exists (see G.Freud, [2, Theorem 1.5, p. 60]).
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and property of orthonality holds:

√
a−β2

∫

−
√

a−β2

(pn,β(λ), pn,β(−λ))

(

λ2 + β2 −β(β − λi)
−β(β + λi) λ2 + β2

)

×

×
(

pm,β(λ)
pm,β(−λ)

)

ρ(
√

λ2 + β2)dλ

| λ |
√

λ2 + β2
+

+

|β|i
∫

−|β|i

(pn,β(λ), pn,β(−λ))

(

β(β − λi) −(λ2 + β2)
−(λ2 + β2) β(β + λi)

)

×

×
(

pm,β(λ)
pm,β(−λ)

)

ρ(
√

λ2 + β2)dλ

i | λ |
√

λ2 + β2
=

= 2Anδnm, n,m = 0,∞.

Note. As we’ll see, orthogonal polynomials on the real axis, poly-

nomials of a kind pn,β from Theorem 4 and polynomials corresponding to an

anti-symmetric matrix J of a kind

J =













βi α0 0 0 .

−α0 −βi α1 0 .

0 −α1 βi α2 .

0 0 −α2 −βi .

. . . . .













,

β ∈ R,αk > 0, k = 0,∞ exhaust in fact the whole class of systems of polynomials,

satisfying (1.1)(1.2)

2. In this chapter we consider the problem of recovering the matrix

measure by its known power moments. In case of real axis, to find function

σ(λ), λ ∈ R : σ(λ) ≥ 0,
∫ ∞
−∞ λkσ(λ)dλ = sk, k = 0,∞ (sk – fixed real) it is

necessary and sufficient for {sk}∞k=0 to be positive, H. Hamburger, [3, Theorem

2.1.1, page 43].
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It turns out to be possible to obtain the criterion of solvability in case of

measure concentrated on the real and the imaginary axes in the complex plane

and having matrix form.

Definition (of symmetric moments problem). Consider following prob-

lem of moments:

to find matrix measure σ(λ) =

(

σ1(λ) σ2(λ)
σ3(λ) σ4(λ)

)

, λ ∈ C; σi(λ) : C → C

are continuous, i = 1, 4:

1) σ1(λ) = σ1(λ), σ4(λ) = σ4(λ), σ2(λ) = σ3(λ);

σ1(λ) ≥ 0, σ1(λ)σ4(λ) − σ2(λ)σ3(λ) ≥ 0, where

(2.1) λ ∈ R ∪ T (T = (−i∞, i∞)).

i.e. σ(λ) is symmetric, nonnegative defined matrix for all λ ∈ R ∪ T .

2)
∫

R∪T

(λk, (−λ)k)σ(λ)d̃λ

(

1
1

)

= sk, k = 0,∞

(2.2)

∫

R∪T

(λk−1, (−λ)k−1)σ(λ)d̃λ

(

λ

−λ

)

= mk, k = 1,∞,

where {sk}∞k=0, {mk}∞k=1 – fixed sequences of complex numbers;

d̃λ =

{

dλ, λ ∈ R

dλ
i
, λ ∈ T

We’ll call this problem symmetric moments problem .

The more general statement of the problem is:

Definition. (of generalized symmetric moments problem). The problem

is:

to find matrix measure σ̃(λ) =

(

σ̃1(λ) σ̃2(λ)
σ̃3(λ) σ̃4(λ)

)

, λ ∈ C; σ̃i(λ) : C → C

is a piecewise continuous on the real and the image axis, i = 1, 4:

1) σ̃(λ) is symmetric, monotonically increasing matrix function:

σ̃1(λ) = σ̃1(λ), σ̃4(λ) = σ̃4(λ), σ̃2(λ) = σ̃3(λ);

σ̃(λ2) ≥ σ̃(λ1), λ2 ≥ λ1, λ1, λ2 ∈ R
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(2.3) σ̃(λ2) ≥ σ̃(λ1),
λ2

i
≥ λ1

i
, λ1, λ2 ∈ (−i∞, i∞)

2)
∫

R∪T

(λk, (−λ)k)dσ̃(λ)

(

1
1

)

= sk, k = 0,∞

(2.4)

∫

R∪T

(λk−1, (−λ)k−1)dσ̃(λ)

(

λ

−λ

)

= mk, k = 1,∞,

where {sk}∞k=0, {mk}∞k=1 are fixed sequences of complex numbers. We call this

problem generalized symmetric moments problem.

Note. In the case of absolute continuity of σ̃(λ) we arive at the previous

statement. The most of results are formulated for symmetric problem but can be

easily reformed to the general form.

The next definitions are usefull:

Definition. We call a pair of sequences {sk,mk+1}∞k=0, sk ∈ C,mk+1 ∈
C, k = 0,∞ symmetric, if holds:

s2k+1 = m2k+1;

s2k = s2k,m2k+2 = m2k+2, k = 0,∞.

Definition. We call a pair of sequences {sk,mk+1}∞k=0, sk ∈ C,mk+1 ∈
C, k = 0,∞ positive one , if the following is correct:













s0 s1 . . sk

m1 m2 . . mk+1

s2 s3 . . sk+2

. . . . .

mk mk+1 . . m2k













> 0, k = 2l + 1;













s0 s1 . . sk

m1 m2 . . mk+1

s2 s3 . . sk+2

. . . . .

sk sk+1 . . s2k













> 0, k = 2l

l = 0,∞.

The following is true
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Assertion. If there exists a nontrivial solution σ(λ)( σ(λ) 6= 02 ) of the

symmetric moments problem (2.1)(2.2), then pair {sk,mk+1}∞k=0 is symmetric

and positive.

P r o o f. Let σ(λ) be solution of problem (2.1)(2.2).

Consider the functional σ(u, v):

σ(u, v) =

∫

R∪T

(u(λ), u(−λ))σ(λ)d̃λ

(

v(λ)
v(−λ)

)

,

where

u(λ), v(λ) ∈ L2
s(R ∪ T, σ(λ)d̃λ) =







f(λ) = (f1(λ), f2(λ)) :

∫

R∪T

(f1, f2))σ(λ)d̃λ

(

f1

f2

)

< ∞, f2(−λ) = f1(λ)







.

Functional σ(u, v) is obviously bilinear.

From condition (2.1) we conclude, that:

(2.5) σ(u, u) ≥ 0, u ∈ L2
s

(2.6) σ(u, v) = σ(v, u), u, v ∈ L2
s.

Note, that by virtue of measure σ(λ) support structure:

σ(u, λ2v) = σ(λ2u, v), u, v ∈ L2
s.

Let Rn(λ) =
∑n

k=0 xkλ
k – be an arbitrary polynomial of n-th degree, (xk ∈

C,n ∈ N).

We have by using (2.5), bilinearity of σ(u, v) and (2.2):

0 ≤ σ(Rn(λ), Rn(λ)) = σ(

n
∑

k=0

xkλ
k,

n
∑

j=0

xjλ
j) =

=

n
∑

k,j=0

xkxjσ(λk, λj) =

n
∑

j=0

(

n
∑

k=0

σ(λk, λj)xk)xj =

2σ(λ) differs from zero on set of positive measure in R ∪ T.
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=















































〈









s0 s1 . . sn

m1 m2 . . mn+1

. . . . .

mn mn+1 . . m2n









, (x0, . . . , xn)
〉

, n = 2l + 1

〈









s0 s1 . . sn

m1 m2 . . mn+1

. . . . .

sn sn+1 . . s2n









, (x0, . . . , xn)
〉

, n = 2l.

l = 0,∞.

From the preceeding equality follows the positivity of {sk,mk+1}∞k=0.

Next, using (2.5)(2.6) and by the equalities

sk = σ(λk, 1) = σ(1, λk) =

{

sk, if k = 2l
mk, if k = 2l + 1

; l = 0,∞

mk+1 = σ(λk, λ) = σ(λ, λk) =

{

sk+1, if k = 2l
mk+1, if k = 2l + 1

; l = 0,∞

it follows the symmetry of {sk,mk+1}∞k=0. This completes the proof. �

The simplest particular case, when the conditions of symmetry and posi-

tivity of {sk,mk+1}∞k=0 will be apparently sufficient for existence of solution σ(λ)

of problem (2.1)(2.2) is the case: sk = mk, k = 1,∞. The conditions of symmetry

and positivity in this case are the condition of positivity of {sk}∞k=0 [3] and the

solution of (2.1)(2.2) exists : σ(λ) =

(

σ1(λ) 0
0 0

)

, σ1(λ) ≥ 0 with real support.

Note. Moments problem (2.1)(2.2) is equivalent to searching for bilinear

functional σ(u, v) in some linear space L ⊃ Lin{1, λ, λ2, . . .}:
1) σ(u, u) ≥ 0,∀u ∈ L.

2) σ(u, v) = σ(v, u),∀u, v ∈ L.

3) σ(u, λ2v) = σ(λ2u, v),∀u, v ∈ L.

4) σ(λk, 1) = sk; σ(λk, λ) = mk+1, k = 0,∞
{sk}∞k=0, {mk}∞k=1 – fixed sequences of complex values.

Suppose, that solution σ(λ) (σ 6= 0, λ ∈ R ∪ T ) of moments problem

(2.1)(2.2) exists. We put into correspondence for measure σ(λ) some fivediago-

nal symmetric matrix J and system of polynomials {pn(λ)}∞k=0, orthogonal with
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respect to measure σ(λ). Namely, let pk(λ) be as follows:

(2.8) pk(λ) =













s0 s1 s2 . sk

m1 m2 m3 . mk+1

s2 s3 s4 . sk+2

. . . . .

1 λ λ2 . λk













, k = 0,∞ (p0 = 1)

Then for vector (pk(λ), pk(−λ)) is correct:

(pk(λ), pk(−λ)) =













s0 s1 s2 . sk

m1 m2 m3 . mk+1

s2 s3 s4 . sk+2

. . . . .

(1, 1) (λ,−λ) (λ2, λ2) . (λk, (−λ)k)













, k = 0,∞.

Multiplying previous equality by σ(λ)

(

λl

(−λ)l

)

l = 0, k − 1 and integrating we

have:

∫

R∪T

(pk(λ), pk(−λ))σ(λ)

(

λl

(−λ)l

)

d̃λ = 0, l = 0, k − 1, k − fixed, k = 0,∞.

Sequently, the system of polynomials {pn(λ)}∞k=1 form an orthogonal system with

respect to measure σ(λ):

∫

R∪T

(pk(λ), pk(−λ))σ(λ)d̃λ

(

pl(λ)
pl(−λ)

)

= 0, k, l = 0,∞ k 6= l

(generally, l > k, but in more detail we can use (2.6) for l ≤ k).

Using the definition of functional σ(u, v) from the proof of the preceding

assertion, we have

σ(pk(λ), pl(λ)) = 0 k, l = 0,∞, k 6= l.

Let us calculate the norm of polynomial pk(λ). (pk(λ) ∈ L2
s(R ∪ T, σ(λ)d̃λ), for

the preHilbert space L2
s with scalar product σ(u, v))

‖ pk(λ) ‖2= σ(pk(λ), pk(λ)) = σ(pk(λ),△k−1λ
k) = △k−1σ(pk(λ), λk) = △k−1△k,
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k = 0,∞.

where

△k =













s0 s1 . . sk

m1 m2 . . mk+1

s2 s3 . . sk+2

. . . . .

mk mk+1 . . m2k













, k = 2l+1; △k =













s0 s1 . . sk

m1 m2 . . mk+1

s2 s3 . . sk+2

. . . . .

sk sk+1 . . s2k













, k = 2l.

l = 0,∞.

From foregoing assertion follows △k > 0, k = 0,∞.

Put

(2.9) p̂k(λ) =
1

√

△k−1△k

pk(λ), (△−1 = 1)

then sequence {p̂k(λ)}∞k=1 form an orthonormal system:

σ(p̂k(λ), p̂l(λ)) = δkl, k, l = 0,∞.

Consider the polynomial λ2p̂k(λ), k = 0,∞. It can be expanded into linear com-

bination of polynomials p̂0(λ), p̂1(λ), . . . , p̂k+2(λ):

λ2p̂k(λ) =

k+2
∑

l=0

ξlp̂l(λ) (ξl ∈ C, l = 0, k + 2).

Multiplying this equality subsequently by p̂n(λ), n = 0, k + 2 we have:

σ(λ2p̂k(λ), p̂n(λ)) = σ(

k+2
∑

l=0

ξlp̂l(λ), p̂n(λ)) = ξn, n = 0, k + 2.

Next, because of {p̂k(λ)}∞k=0 orthogonality:

σ(λ2p̂k(λ), p̂n(λ)) = σ(p̂k(λ), λ2p̂n(λ)) = 0, n < k − 2

then (we put p̂−1(λ) = p̂−2(λ) = 0):

λ2p̂k(λ) =

k+2
∑

l=k−2

σ(λ2p̂k(λ), p̂l(λ))p̂l(λ)

= σ(λ2p̂k(λ), p̂k+2(λ))p̂k+2(λ) + σ(λ2p̂k(λ), p̂k+1(λ))p̂k+1(λ)

+σ(λ2p̂k(λ), p̂k(λ))p̂k(λ) + σ(λ2p̂k(λ), p̂k−1(λ))p̂k−1(λ)

+σ(λ2p̂k(λ), p̂k−2(λ))p̂k−2(λ)

= αkp̂k+2(λ) + βkp̂k+1(λ) + γkp̂k(λ) + βk−1p̂k−1(λ) + αk−2p̂k−2(λ),
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where

αk = σ(λ2p̂k(λ), p̂k+2(λ))

(2.10) βk = σ(λ2p̂k(λ), p̂k+1(λ))

γk = σ(λ2p̂k(λ), p̂k(λ)), k = 0,∞ (β−1 = α−1 = α−2 = 0)

and we used the σ(u, v) properties (2.4), (2.5).

From here

λ2p̂k(λ) = αk−2p̂k−2(λ) + βk−1p̂k−1(λ) + γkp̂k(λ) + βkp̂k+1(λ)+

(2.11) +αkp̂k+2(λ), k = 0,∞ (β−1 = α−1 = α−2 = 0).

Equality (2.11) is a recurrence for rebuilding of polynomials {p̂k(λ)} and can be

written in the following way:

Jp̂ = λ2p̂,

where

J =













γ0 β0 α0 0 0 0 .

β0 γ1 β1 α1 0 0 .

α0 β1 γ2 β2 α2 0 .

0 α1 β2 γ3 β3 α3 .

. . . . . . .













− symmetric fivediagonal matrix.

(2.12) p̂ =









p̂0(λ)
p̂1(λ)
p̂2(λ)

.









p̂0(λ) =
1√
s0

; p̂1(λ) =
1

√

s0(s0m2 − s1m1)
(s0λ − s1).

Without restricting of generality we can put s0 = 1.

So, as we know measure σ(λ) is a solution of moments problem, we can build

fivediagonal matrix J and orthogonal system of polynomials {p̂k(λ)}∞k=0. In

our constructions, however, we didn’t use the σ(λ) explicitly, but it’s moments

{sk,mk+1}∞k=0 only.

Now, let we have a pair of sequences {sk,mk+1}∞k=0, which is symmetric

and positive. Let us define after (2.8)(2.9) sequences of polynomials {pk(λ)}∞k=0
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and {p̂k(λ)}∞k=0. Next, by means of equalities 2)-4) of the note after the as-

sertion we define the bilinear functional σ(u, v) on Lin{1, λ, λ2, . . .}. With the

aid of (2.10)(2.11)(2.12) we define coefficients {αk, βk, γk}∞k=0 and construct the

corresponding matrix (we call it Jacobi matrix) J .

A question appears: Is it possible with the help of J and {p̂k(λ)}∞k=0 to

find measure σ(λ). We consider a particular case, when J admits extracting

of a square root with threediagonal matrix structure. In that case the solution

of moments problem will be constructed in a special form. (in fact this case is

one-dimensional). After this a basic theorem of solvability will be proved.

Theorem 5. Let the following sequence of polynomials be given : p0 =

1, p1 = c1λ + b, . . . , pk(λ) = ckλ
k + . . . , . . .

ck > 0, k = 1,∞, b ∈ C

and holds the relation:









γ0 β0 α0 0 0 .

β0 γ1 β1 α1 0 .

α0 β1 γ2 β2 α2 .

. . . . . .

















p0

p1

p2

.









= λ2









p0

p1

.

.









,

where

αk > 0, γk ∈ R,βk ∈ C, k = 0,∞

For correctness of equality:









β̂0 α̂0 0 0 .

γ̂0 β̂1 α̂1 0 .

0 γ̂1 β̂2 α̂2 .

. . . . .

















p0

p1

p2

.









= λ









p0

p1

p2

.









for some set of complex numbers

α̂k, β̂k, γ̂k, k = 0,∞,

it is necessary and sufficient the following conditions to be satisfied:

a) βk = 0 or βk

βk
=

{

c, if k is even
1
c
, if k is odd.

where c – some fixed complex value on the unit circle, k = 0,∞.
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b) γ0 = b2+c
c2
1

, ( c from condition a) )

γk = c(α′2
k−1 + α′2

k ) + β′2
k

where α′
k =











1

c1

α1α3 . . . αk−1

α0α2 . . . αk−2
, if k is even

c1
α0α2 . . . αk−1

α1α3 . . . αk−2
, if k is odd.

k = 2, 3, . . .

α′
0 =

1

c1
, α′

1 = α0c1,

β′
k =

k−1
∑

j=0

(−1)j
βk−1−j

α′
k−1−j

+ (−1)k+1 b

c1
, k = 0, 1, . . .

If a) and b) are satisfied, then coefficients {α̂k, γ̂k, β̂k} can be found as follows:

α̂k = α′
k, γ̂k = cα′

k, β̂k = β′
k, k = 0,∞

Note. The above theorem shows, that for existance of threediagonal

square root of fivediagonal matrix, the hard restrictions must fulfill: sequence

{αk}∞k=0 may be arbitrary, but argument of βk- is strictly fixed, {γk}∞k=0 being

uniquely defined after {αk, βk}∞k=0, c1 > 0, b ∈ C and some c ∈ C.

Corollary 1. If under conditions of Theorem 5 is correct: c = ±1,

then roots of polynomials {pk(λ)}∞k=0 lie on the real and the imaginary axes in

the complex plane.

Note. For an arbitrary fivediagonal matrix the conclusion of previous

corollary is not valid.

Corollary 2. Let moments problem (2.1)(2.2) be given. If sequence

of coefficients {αk}∞k=0, {βk}∞k=0, {γk}∞k=0, constructed after moments pair of se-

quences {sk,mk+1}∞k=0 (see the reasoning after deducing of polynomials p̂k form

and J) satisfies conditions of preceeding theorem with c = 1, then the solution of

moments problem exists.

To prove this, note that threediagonal matrix is a real symmetric matrix

or have a structure of Jβ matrix from Theorem 4 in this case.
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Note, that the case c = −1 in above theorem leads to an anti-symmetric

matrix

J =













βi α0 0 0 .

−α0 −βi α1 0 .

0 −α1 βi α2 .

0 0 −α2 −βi .

. . . . .













, β ∈ R,αk > 0, k = 0,∞

The following holds

Theorem 6. Let the moments problem (2.3)(2.4) in general form be

given. For existance of problem’s solution σ(λ) (with infinite number of points of

increasing) it is necessary and sufficient for pair of sequences {sk,mk+1}∞k=0 to

be symmetric and positive.

P r o o f. Necessity was proved for absolutely continuous case (see Asser-

tion) and can be easily carried on general case.

Let us show sufficiency.

Let pair of sequences {sk,mk+1}∞k=0 be symmetric and positive. It is

required to construct solution of problem σ(λ), satisfying conditions (2.3)(2.4).

By described above reasonings, we define sequence of polynomials

{p̂k(λ)}∞k=0 and matrix J . Let JN be cutted matrix:

JN =

















γ0 β0 α0 0 0 .

β0 γ1 β1 α1 0 .

α0 β1 γ2 β2 α2 .

. . . . . .

0 αN−3 βN−2 γN−1 βN−1

0 0 αN−2 βN−1 γN

















– of (N + 1) × (N + 1) order.

Next, obviously holds relation:

(2.14) JN p̂N+1 = λ2p̂N+1 −

















0
0
.

0
R1(λ)
R2(λ)

















, where p̂N+1 =













p̂0

p̂1

.

.

p̂N













;
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R1(λ), R2(λ) – correcting polynomials (first (N−1) rows coincide with recurrence

relation (2.12), but last have cutted form):

R1(λ) = λ2p̂N−1(λ)−αN−3p̂N−3(λ)−βN−2p̂N−2(λ)−γN−1p̂N−1(λ)−βN−1p̂N (λ);

R2(λ) = λ2p̂N (λ) − αN−2p̂N−2(λ) − βN−1p̂N−1(λ) − γN p̂N (λ)

of degrees (N + 1) and (N + 2) correspondingly.

Let us consider the next polynomial:

Q(λ) = det

(

R1(λ) R1(−λ)
R2(λ) R2(−λ)

)

= R1(λ)R2(−λ) − R1(−λ)R2(λ)

Now we’ll see, that points of spectrum of JN are the points, where matrix

Q(λ) is degenerate.

Let λ be zero of Q(λ) : R1(λ) = R2(λ) = 0, | R1(−λ) |2 + | R2(−λ) |2> 0.

Then λ2 is point of prime ( at least ) spectrum of JN :

JN p̂N (λ) = λ2p̂N (λ)

Analogously, if λ – root of Q(λ): | R1(λ) |2 + | R2(λ) |2> 0, R1(−λ) =

R2(−λ) = 0, then λ2 is point of prime ( at least ) spectrum of JN :

JN p̂N (−λ) = λ2p̂N (−λ)

Let λ – root of Q(λ): R1(λ) = R2(λ) = R1(−λ) = R2(−λ) = 0. In this case λ2

is point of double spectrum of JN (because matrix JN may have not more then

double spectrum):

JN p̂N (λ) = λ2p̂N (λ), JN p̂N (−λ) = λ2p̂N (−λ)

Let now λ – arbitrary root of Q(λ), be different from considered above and λ 6= 0.

Using the property of determinants, we have: ∃α(λ), β(λ) :| α(λ) |2 + | β(λ) |2> 0

– some complex numbers, depending on λ:

α(λ)R1(λ) + β(λ)R1(−λ) = 0

α(λ)R2(λ) + β(λ)R2(−λ) = 0

and λ2 is point of prime spectrum ( at least ) of JN :

JN (α(λ)p̂N (λ) + β(λ)p̂N (−λ)) = λ2(α(λ)p̂N (λ) + β(λ)p̂N (−λ))
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Evidently, that if λ is root of Q(λ), then −λ also is a root. If it is remembered,

that Q(λ) is of 2N+3 degree we have:

Q(λ) = Aλ

N
∏

i=0

{(λ − λk)(λ + λk)} = Aλ

N
∏

i=0

(λ2 − λ2
k), where λk ∈ C, k = 0, N,

A − some real number.

and to any of λk corresponds a point of spectrum of JN matrix.

On the other hand, if λ2 6= 0 is eigenvalue of matrix JN with eigenvector

~a:

~a =













1
a1

a2

.

aN













∈ CN+1,

then there exist numbers α, β ∈ C:

αp̂1(λ) + βp̂1(−λ) = a1

and therefore, from first (N-1) rows of equality (2.14) follows, that:

αp̂(λ) + βp̂(−λ) = ~a

and hence: Q(λ) = 0. (The case, when first element of ~a : a0 = 0 is analogous).

If λ2 is double eigenvalue it is easy to see, that in this case fulfiles: R1(λ) =

R1(−λ) = R2(λ) = R2(−λ) = 0 and hence λ2 is double root of Q(λ).

Special case λ = 0 is considered analogously.

Note, that fivediagonal matrix JN can’t have more than double spectrum

because of recurrence for components of eigenvector.

So, λ1, . . . , λN is a set of eigenvalues (with remembered multiplicity) of

JN and then:

Q(λ) = AλX(λ2), A ∈ R,

where X(λ) is characteristic polynomial of matrix JN .

Let λ0, . . . , λp, p ≤
[

N
2

]

– be double roots of Q(λ). Then a set of vectors

~ci =













1
p̂1(λi)
p̂2(λi)

.

p̂N (λi)













, ~̂ci =













1
p̂1(−λi)
p̂2(−λi)

.

p̂N (−λi)













, i = 0, p
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form, generally, nonorthogonal basis in each of eagen two-dimensional subspaces,

corresponding to eigenvalue λ2
i of matrix JN . (λ = 0 can’t be double eigenvalue,

or then follows JN = 0).

Next, let λp+1, . . . λl – prime roots of Q(λ) (2(p + 1) + (l − p) = N + 1).

Vectors

~ci = α(λi)













1
p̂1(λi)

.

.

p̂N (λi)













+ β(λi)













1
p̂1(−λi)

.

.

p̂N (−λi)













,

where

α, β : | α(λi) |2 + | β(λi) |2> 0, i = p + 1, N

corresponds to one-dimensional eigen subspaces of JN for eigenvalues λ2
i .

Applying a known theorem of the linear algebra, we have:

HN+1 =

p
⊕

i=0

Lin{~ci,~̂ci} ⊕ (

N
⊕

i=p+1

Lin{~ci}),

where HN+1 is space of complex vectors of dimension N + 1, i.e. (N + 1)-

dimensional complex space is expanding into direct sum of symmetric matrix

eigen subspaces.

Denote Ei = Lin{~ci,~̂ci}, i = 0, p; Ei = Lin{~ci}, i = p + 1, l. Then

HN+1 =
l

⊕

i=0

Ei.

Choose in every Ei orthogonal basis:

~ui =
~ci

‖ ~ci ‖
, ~̂ui =

~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖

‖ ~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖ ‖
, i = 0, p

~ui =
~ci

‖ ~ci ‖
, i = p + 1, l

For arbitrary vector ~x ∈ HN+1 is correct an expansion:

~x =

p
∑

i=0

(~x, ~ui)~ui +

p
∑

i=0

(~x, ~̂ui)~̂ui +
l

∑

i=p+1

(~x, ~ui)~ui
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Let ~yi ∈ HN+1, then for scalar product we have:

(~x, ~y) =

p
∑

i=0

(~x, ~ui)(~y, ~ui) +

p
∑

i=0

(~x, ~̂ui)(~y, ~̂ui) +

l
∑

i=p+1

(~x, ~ui)(~y, ~ui)

Substituting expression for ~ui, ~̂ui into last equality:

(~x, ~y) =

p
∑

i=0

(~x,
~ci

‖ ~ci ‖
)(~y,

~ci

‖ ~c i

‖}+

+

p
∑

i=0

(~x,

~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖

‖ ~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖ ‖
)(~y,

~̂ci − (~̂ci,
~ci

‖~ci‖ )
~ci

‖~ci‖

‖ ~̂ci − (~̂ci,
~ci

‖~ci‖ )
~ci

‖~ci‖ ‖
)+

+

l
∑

i=p+1

(~x,
~ci

‖ ~ci ‖
)(~y,

~ci

‖ ~ci ‖
) =

p
∑

i=0

1

‖ ~ci ‖2
(~x,~ci)(~y,~ci)+

+

p
∑

i=0

1

‖ ~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖ ‖2
{(~x,~̂ci)(~y,~̂ci) − (~x,~̂ci)(~y, (~̂ci,

~ci

‖ ~ci ‖
)

~ci

‖ ~ci ‖
)−

−(~x, (~̂ci,
~ci

‖ ~ci ‖
)

~ci

‖ ~ci ‖
)(~y,~̂ci) + (~x, (~̂ci,

~ci

‖ ~ci ‖
)

~ci

‖ ~ci ‖
)(~y, (~̂ci,

~ci

‖ ~ci ‖
)

~ci

‖ ~ci ‖
)}+

+

l
∑

i=p+1

1

‖ ~ci ‖2
(~x,~ci)(~y,~ci) =

=

p
∑

i=0

{ 1

‖ ~ci ‖2
+

1

‖ ~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖ ‖2

1

‖ ~ci ‖2
| (~̂ci,

~ci

‖ ~ci ‖
) |2}(~x,~ci)(~y,~ci)+

+

p
∑

i=0

1

‖ ~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖ ‖2

(~x,~̂ci)(~y,~̂ci) −
p

∑

i=0

1

‖ ~̂ci − (~̂ci,
~ci

‖~ci‖)
~ci

‖~ci‖ ‖2

{

(~̂ci,
~ci

‖ ~ci ‖
)

1

‖ ~ci ‖
(~x,~̂ci)(~y,~ci)+

+(~̂ci,
~ci

‖ ~ci ‖
)

1

‖ ~ci ‖
(~x,~ci)(~y,~̂ci)

}

+
l

∑

i=p+1

1

‖ ~ci ‖2
(~x,~ci)(~y,~ci) =
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=

p
∑

i=0

((~x,~ci), (~x,~̂ci))









1
‖~ci‖2 (1 + |(~̂ci,~ci)|2

‖~ci‖2‖~̂ci−(~̂ci,
~ci

‖~ci‖
)

~ci

‖~ci‖
‖2

)− (~̂ci,~ci)

‖~ci‖2‖~̂ci−(~̂ci,
~ci

‖~ci‖
)

~ci

‖~ci‖
‖2

− (~̂ci,~ci)

‖~ci‖2‖~̂ci−(~̂ci,
~ci

‖~ci‖
)

~ci

‖~ci‖
‖2

1

‖~̂ci−(~̂ci,
~ci

‖~ci‖
)

~ci

‖~ci‖
‖2









×

×
(

(~y,~ci)(~y,~̂ci)
)

+

l
∑

i=p+1

1

‖ ~ci ‖2
(~x,~ci)(~y,~ci)

Let PN be the space of polynomials of degree not greater than N . Construct

mapping f : HN+1 → PN as follows :

~x = (x0, x1, . . . , xn) ∈ HN+1 f→ f(~x)(λ) =
N

∑

i=0

xip̂i(λ) ∈ PN .

For linear span of polynomials p̂i(λ) coincides with PN , then it is mapping on

PN .

Using previous equality:

(~x, ~y)HN+1 =

p
∑

k=0

(f(~x)(λk), f(~x)(−λk))σN (λk)

(

f(~y)(λk)
f(~y)(−λk)

)

+

+

l
∑

k=p+1

(f(~x)(λk), f(~x)(−λk))σ̂N (λk)

(

f(~y)(λk)
f(~y)(−λk)

)

,

where

σN (λk) =









1
‖~ck‖2 (1 + |(~̂ck,~ck)|2

‖~ck‖2‖~̂ck−(~̂ck,
~ck

‖~ck‖
)

~ck

‖~ck‖
‖2

) − (~̂ck,~ck)

‖~ck‖2‖~̂ck−(~̂ck,
~ck

‖~ck‖
)

~ck

‖~ck‖
‖2

− (~̂ck,~ck)

‖~ck‖2‖~̂ck−(~̂ck,
~ck

‖~ck‖
)

~ck

‖~ck‖
‖2

1

‖~̂ck−(~̂ck,
~ck

‖~ck‖
)

~ck

‖~ck‖
‖2









σ̂N (λk) =

(

| α(λk) |2 α(λk)β(λk)

β(λk)α(λk) | β(λk) |2
)

(we used, that:

(~x,~ck)(~y,~ck) =

= (~x, α(λk)p̂
N+1(λk)+β(λk)p̂

N+1(−λk))(~y, α(λk)p̂N+1(λk) + β(λk)p̂N+1(−λk)) =

=| α(λk) |2 (~x, p̂N+1(λk))(~y, p̂N+1(λk))+α(λk)β(λk)(~x, p̂N+1(λk))(~y, p̂N+1(−λk))
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+β(λk)α(λk)(~x, p̂N+1(−λk))(~y, p̂N+1(λk))+

+ | β(λk) |2 (~x, p̂N+1(−λk))(~y, p̂N+1(−λk)) k = p + 1, l)

Preceeding equality we can rewrite in following way:

(~x, ~y)HN+1 =

∫

R∪T

(f(~x)(λ), f(~x)(−λ))d(σ′
N (λ) + σ̂′

N (λ))

(

f(~y)(λ)
f(~y)(−λ)

)

where σ′
N (λ) is a piecewise constant matrix function (2×2) with jumps at points

λk, k = 0, p:

σ′
N (λk + 0) − σ′

N (λk − 0) = σN (λk) ; λk − real

σ′
N (λk + i0) − σ′

N (λk − i0) = σN (λk) ; λk − imaginary.

σ̂′
N (λ)− piecewise constant matrix function (2 × 2) with jumps at points λk,

k = p + 1, l:

σ̂′
N (λk + 0) − σ̂′

N (λk − 0) = σ̂N (λk) ; λk − real

σ̂′
N (λk + 0) − σ̂′

N (λk − 0) = σ̂N (λk) ; λk − imaginary.

σ′
N (−∞) = σ̂′

N (−∞) = σ′
N (−i∞) = σ̂′

N (−i∞) = 0.

Consider next functional

σN (u, v) =

∫

R∪T

(u(λ), u(−λ))dσ̃N (λ)

(

v(λ)
v(−λ)

)

,

σ̃N (λ) = σ′
N (λ) + σ̂′

N (λ);

u, v ∈ L2
σ̃N

= {u(λ) :

∫

R∪T

(u(λ), u(−λ))dσ̃N (λ)

(

u(λ)
u(−λ)

)

< ∞} ⊃

Lin{p̂0(λ), . . . , p̂N (λ)}
Since matrix-function σ̃N (λ) satisfies conditions (2.3) from statement of moments

problem, we easily conclude, that for functional σN (u, v) properties 1)–3) from

note to assertion hold (where L = L2
σ̃N

in our case).

Next, because of:

λk =
k

∑

i=0

ξip̂i(λ), k : 0 ≤ k ≤ N − fixed, ξk > 0, ξi ∈ C, i = 0, k − 1.
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λ = η0p̂0(λ) + η1p̂1(λ), η1 > 0, η0 ∈ C.

then

σN (λk, 1) = σN (

k
∑

i=0

ξip̂i(λ), p̂0(λ)) =

k
∑

i=0

ξiσN (p̂i(λ), p̂0(λ)) = ξ0 = σ(λk, 1) = sk,

where σ(u, v) - required functional:

σ(u, v) =

∫

R∪T

(u(λ), u(−λ))dσ̃(λ)

(

v(λ)
v(−λ)

)

,

σ̃(λ) – solution of moments problem, u, v ∈ L2(dσ̃(λ));

σN (λk, λ) = σN (
k

∑

i=0

ξip̂i(λ), η1p̂1(λ) + η0p̂0(λ)) =
k

∑

i=0

ξi(η1σN (p̂i(λ), p̂1(λ))+

+η0σN (p̂i(λ), p̂0(λ))) = ξ1η1 + ξ0η0 = σ(λk, λ) = mk+1.

That means, hence:

σN (λk, 1) = sk,

σN (λk, λ) = mk+1; 0 ≤ k ≤ N.

Sequently, matrix function σ̃N satisfies condition (2.4) of moments prob-

lem for 0 ≤ k ≤ N .

Observing that
(

σ̃N (λ)(
1
1

), (1, 1)

)

≤
∫

R∪T

(1, 1)dσ̃N (λ)

(

1
1

)

= s0,

and following standart arguments for components of σ̃N (λ), based on a Theorems

of E. Helly, see [6, Theorem 2, p. 420, Theorem 3,p. 422], see also [4], we choose

a subsequence σ̃Nk
and obtain a measure σ̃(λ) that is a solution of our problem

(2.3),(2.4). The proof is completed. �

Note. It is possible the generalization of the moments problem, that

leads to polynomials on pencil of lines with centre at zero. Measure matrix will

be of dimension (n × n), n ≥ 1 and the orthogonality will be as follows:

∫

P

(pk(λ), pk(λe), . . . , pk(λen−1))dσ̃(λ)









pl(λ)
pl(λe)

. . .

pl(λen−1)









= δkl, k, l = 0,∞
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e − primitive n-th order root of unity.

P = {λ ∈ C : λn ∈ R}

{pk(λ)} – system of polynomials, corresponding to n-diagonal symmetric matrix

J . Also, it is of interest using of σ̃(λ) in spectral problems of differential operators

theory (analogue of: d2

dt2
u = Lu, where L – threediagonal [5]).
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