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ABSTRACT. Let C' = (C, g}) be a tetragonal curve. We consider the scrollar
invariants eq, e2, e of gi. We prove that if W} (C) is a non-singular variety,
then every g; € W/ (C) has the same scrollar invariants.

0. Introduction. Let C be a complete non-singular curve defined over
an algebraically closed filed k& with char(k) # 2. Let g = g(C) be the genus of
C and let g} be a base-point-free linear system on C of degree d and projective
dimension 1. A pair C = (C,0(g})) is called a d-gonal curve if C' does not admit
a linear system of degree e < d. If a C = (C,O(g})) is a d-gonal curve, then g} is a
(base-point-free) complete linear system. Now we consider a pair C' = (C, O(g}))
such that gé is a complete base-point-free of degree d. Let wc be a canonical
sheaf on C, let £ = O(g}) and let F;= I'(C,wc ® LZ7Y). If p: C — P is the
map which corresponds to g} then p.we = Opi(e1) @ -+ @ Opi(eg_1) @ Op1(—2)
and F; 2 I'(P!, p,we ® Op1(—i)). The modules F; (i = 1,2,---) give a filtration,

KO D---DF,D---
and by the definition of {F;}5°, we have injective maps

Fo/Fi = Fi/Fy = = Fy[Fppg -
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By Riemann-Roch’s Theorem, dimFy/F; = d — 1. Now we define the scrollar
invariants e;=e;(L) (i =1,---d — 1) by

61261(5):#{j€N,d1m (ﬂfl/ﬂ)zl}—l (121,2,,61—1)

and we put eg = eg(L) = 0. Let Wj(C) be a subscheme of a Picard variety
Pic(C) roughly defined as follows:

W) B &5 (1 ¢ picd(C)|dim I(C, L) > r + 1}

The precise definition is found in Arbarello, Cornalba, Griffiths, Harris [1] p.
176. If C = (C,g)) is a hyperelliptic curve or a trigonal curve, then the scrollar
invariants of any g} € W}(C) depend only on the curve C. We now assume that
C = (C,g}) is a tetragonal curve. If C = (C, g}) is an elliptic-hyperelliptic curve,
then there is a m : C' — E where F is an elliptic curve and degm = 2. Then
W) = m*W4(E). Hence the scrollar invariants of any gi € W/ (C) depend
only on the curve C. If ¢ < 4, then C is a trigonal curve. So we assume 5 < g
and C' is not an elliptic-hyperelliptic curve.

Definition A. Let C; C P? be a plane curve and let P € Cq be a
double point. We call that P is an r-fold node if P is analytically isomorphic
to the singularity at (0,0) of the curve y*> = 22" in A% and we call that P is an
r-fold cusp if P is analytically isomorphic to the singularity at (0,0) of the curve
y? = 22t in A? (see Hartshorne [9] p. 38 Exercise 5.14(d)).

Theorem A (Main Theorem). Let C be a tetragonal curve of genus g,

where 6 < g < 8. Assume that C is not elliptic-hyperelliptic and #(W}(C)) > 2.
For any g5 € W}(C), there is a divisor D = Dy such that |K¢c — g4 — D| gives
a birational morphism p = Pyt C — C; C P?, deg(C}) = 6 and every singular
point of Cy has multiplicity 2. Let k} € Wi(C). Then there is a gf € Wi(C) and
a P € Sing(C}) = Sing(pgi (C)) such that kj is given by a cut out of lines which
pass through P. And we have the following:
I) The following statements are equivalent:

1) ki € Wi(C) is a reduced point

2) P is an ordinary node or an ordinary cusp

3) k} is of type (1,1,1) if g =6, (2,1,1) if g = 7 and (2,2,1) if g = 8.
IT) The following statements are equivalent:

1) P is a 2-fold node or a 2-fold cusp

2) k} is of type (2,1,0) if g =6, (2,2,0) if g =7 and (3,1,1) if g = 8.
IIT) The following statements are equivalent:

1) P is a 3-fold node or a 3-fold cusp

2) k} is of type (3,1,0) if g =T7.
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As a corollary of Theorem A, we have the following:

Corollary A. Assume that C is a tetragonal curve and C is not an
elliptic-hyperelliptic curve. If g > 10, then C has only one gi. If5 < g <9
and W{(C) is reduced, then there exist integers e; > eg > e3 > 0 such that any
gt € WE(C) has ey, ea,e3 for its scrollar invariants.

I would like to express my sincere gratitude to the referee for his helpful
and kind advice.

NOTATIONS

char(k): The characteristic of a field k

O4: The structure sheaf of a variety A

f*: The pull back defined by a morphism f

f«t The direct image defined by a morphism f

deg (f): The degree of a finite morphism f

|£|: The complete linear system defined by an invertible sheaf £
¢y The rational map defined by a linear system V'

O4(D): The invertible sheaf associated with a divisor D

I'(A, F): The global sections of a sheaf F

K 4: A canonical divisor on a non-singular variety A

wa: The canonical invertible sheaf on a non-singular variety A

o
P(E): The projective bundle Proj(@ Sym"E) defined by a locally free sheaf &
n=0
on a variety Y

1. Preliminary and Known Facts. Let C' be a non-singular curve of
genus g defined over an algebraically closed field k. Let gé be one of a base-point-
free linear system on C' of degree d and projective dimension 1. We assume that
C is a tetragonal curve, i.e. C admits a gj but does not admit a gl for every
e < 4. We know that if ¢ < 4, then C' is a hyperelliptic curve or a trigonal curve.
So we assume that g > 5. The following results are proved in [10].
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Theorem 1. If [(eq—1 + 2)g}| is birationally very ample, then
ei—1 < e +eqg-1+ 2
for any i € Z/dZ.
Theorem 2. Let ey, ez, e3 and g > 5 be integers such that
e1 <exte3+2, ea<23+2, e >ex>e3, et+extez=g-—3,
then there is a tetragonal curve C = (C,g}) of genus g such that O(g})®®+? is
birationally very ample and e; = e1(g}), e2 = ea(g}), e3 = e3(g}).

Theorem 3. Let C = (C,g}) be a tetragonal curve of genus g with
scrollar invariants ey, es, es. If O(g3)®+? is not birationally very ample, then
there exists a curve C = (C1,hd) of genus e3 + 1 with a pencil of degree 2 and a
map 7 : C — Cy of degree 2 such that g} =r*(h3).

Hence we have the following result.
Corollary 1. Let e1,es,es3 and g > 5 be integers. Then there exists a

tetragonal curve C = (C,g}) of genus g such that e; = e1(gi),e2 = e2(gi), e3 =
e3(g}) if and only if

e1<eytes+2, eg>e>e3, €1 +ey+e3=g—3.

We now assume that C is not elliptic-hyperelliptic. For g=5, we have the
following result. Let C' < P* be the canonical embedding. Let § = P? be the
linear system of quadrics in P* containing C, I' is the locus of quadrics of rank
< 4 and I" is the locus of quadrics of rank < 3. We know the following:

Proposition 1. If C is a tetragonal curve, then a general Q € 0§ is
non-singular.

By Proposition 1, we have that ' € P? is a plane curve of degree 5.
Let £ € W{(C) and let Qz = P(Opi(er) @ Opi(ea) ® Opi(ez)) C P, where
ei = €;(L£). As Qr is contained in I' (see E. Arbarello, M. Cornalba, P. A.
Griffiths, J. Harris [1] p. 240 Theorem 2.1), we have the morphism

¢: WiC)—-T

given by
¢(L) = Qc.

Then we know the following Theorem:
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Theorem 4. (W}(C))ging = ¢ ' (I) = {L|L € W}(C),L®* = we}.

As a corollary of Theorem 4, we have the following:

Corollary 2. Let C be a tetragonal curve of genus 5. If WE(C) is
non-singular, then any gi € Wi (C) has same e1, ez, e3.

We now assume that C' is a tetragonal curve C of genus 6 which is not
elliptic-hyperelliptic. Then we know the following results. Let £ be a tetragonal
linear system (therefore £ is a base-point-free linear system) on C. Then the
line bundle we ® L& defines a base-point-free linear system of degree 6 and
of projective dimension 2 on C because if wc ® £&~! has a base point, then
wo ® LZ71 defines a map ¢ : C — Cy C P? such that deg(¢)deg (Co) < 5. If
deg (¢) > 2, then C is a trigonal curve or a hyperelliptic curve. Therefore C
has a singular plane curve model of degree < 5. Hence C' has a trigonal linear
system or a hyperelliptic linear system because Cy must have a singular point
and the lines in P? which pass through one of the singular points of Cj induces
a trigonal linear system or a hyperelliptic linear system. This is a contradiction.
So we ® LP™! defines a base-point-free linear system. As we assume that C is not
an elliptic-hyperelliptic curve, therefore deg(¢) = 1. So C has a singular plane
curve model Cj of degree 6, therefore the arithmetic genus p,(Cy)=10. As C is
not trigonal and not hyperelliptic, every singular point of Cj is multiplicity 2. So
Cp has just 4 singular points (including infinitely near singular points).

Proposition 2.  Every member of Wi (C) is given by a cut out of the
lines in P? which pass through one of the singular points of Co or is given by a
cut out of conics in P? which pass through 4 singular points (singular points of
Co and its infinitely near singular points of Cy).

Proof. See Griffiths, Harris [7] p. 210. O

Let g5, ki € W}(C) and let C; be the singular plane curve model defined
by |Kc — gi|. Assume that k} is given by a cut out of conics which pass through
4 singular points. Then we consider a singular plane curve model defined by
|Kc —kj| and let hj be a tetragonal linear system given by a cut out of the lines.
We consider a singular plain curve model defined by |K¢ — h}|. Then kj is given
by a cut out of the lines. So we may assume that k} € W{(C) is given by a cut
out of the lines. Let P € Sing(C}) be a singular point corresponds to kj. By the
definition of (e, es,e3), we have the following proposition.

Proposition 3. The following conditions are equivalent:
1) gf € WE(C) is a non-reduced point
2) g1 is type (2,1,0).
3) P is a 2-fold node or a 2-fold cusp.
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So we have the following theorem:

Theorem 5. Let C be of genus 6. If Wi (C) is reduced of dimension 0,
then every g} is of type (1,1,1).
The following result is given by the adjunction formula on P! x P!.

Lemma 1 (Riemann). Let C be a Riemann surface of genus g,
let f1, fo be a meromorphic function on C of deg(f1) = dy,deg(f2) = dy and
E(C) =k(f1, f2). Then g < (d1 —1)(dy —1).

By Lemma 1, we have the following result.

Theorem 6.  Assume that C is a tetragonal curve and it is not an
elliptic-hyperelliptic curve of genus g. If g > 10, then C has only one g}.

Proof. We assume that #(W}(C)) > 2. Then we can take distinct
tetragonal (therefore base-point-free) linear systems g}, hi on C. Let ¢ : C —
P! x P! be defined by ¢ = (g, h]). Then gf = p1-¢ and h} = ps - ¢ where p; and
po are projections. Therefore deg ¢ =1,2 or 4. Let Cy = ¢(C). If deg ¢ = 4, then
Cp is a rational curve so gi = hj. If deg ¢ = 2, then (j is linearly equivalent to
20 + 2m where | = pt x P! and m = P! x pt. Therefore Cj is a rational curve or
an elliptic curve by the adjunction formula. Therefore we have that deg(¢) = 1.
Therefore we prove Theorem 6 by Lemma 1. O

The following theorem is found in E. Arbarello, M. Cornalba, P. A. Grif-
fiths, J. Harris [1] (see p. 189 (4.2) Proposition).

Theorem 7.  Let £L € Wj(C)\ WiTH(C). Then the tangent space
T (W) (C)) is isomorphic to (imug)t € HY(C,O¢) where p : I'(C, L)RI'(C,we®
LY — I'(C,we) is the cup product map and (imug)* denotes the complement
space of imug C I'(C,we).

The following is also found in E. Arbarello, M. Cornalba, P. A. Griffiths,
J. Harris [1] (see p. 191 (5.1) Theorem and p. 193 (5.2) Theorem).

Theorem 8 (Martens-Mumford). Ifg > 3,2<d<g—1 and
0 < 2r <d, then dimWj(C) < d —2r. If C is a non-hyperelliptic curve and
d < g—2, then dimWj(C) < d—2r —1 and if there is a component X C Wj(C)
such that dimX = d — 2r — 1, then C is either trigonal, elliptic-hyperelliptic or
smooth plane quintic.

2. The proof of Main Theorem. We now prove Theorem A. By
Proposition 3, we may assume that C' is a non-singular curve of genus g=7 or 8.
We have already assumed that C is a tetragonal curve i.e. neither hyperelliptic
nor trigonal and admits a tetragonal (base-point-free) linear system g}. Moreover
we may assume that C' is not an elliptic-hyperelliptic curve. Let g}, hi € Wi (C)
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be such that gf # hi. Let p = (gi,hl) : C — P* x PL. As C is not an elliptic-
hyperelliptic curve, so p is a birational morphism to its image. And every singular
point of p(C) has multiplicity 2 because p(C) C P! x P! < P? is of degree 8 and
C' is neither hyperelliptic, nor trigonal and nor elliptic-hyperelliptic, i.e. if p(C)
has a singular point P such that mult p(p(C)) > 3, then we have a singular plane
curve model of degree < 5 and such curve is hyperelliptic or trigonal or elliptic-
hyperelliptic. Let I = pt x P! and m = P! x pt and let Cy = p(C). Take one
singular point P € Cy and take [ 5 P and m1 3 P such that [ ~ [; and m ~ m;
where ~ means a linear equivalence. We consider a blowing-up 7 : T} — P! x P!
at P. Let lp be a proper transform of Iy, let mg be a proper transform of my,
let Fy be the exceptional divisor and let C' be a proper transform of Cp. We
first assume that g=7. Then C has one singular point (). So we consider a
blowing-up 7o : To — 17 at @, let S = T, m = m - mo, let EF7 = the total
transform of Iy, F» = the total transform of mg and F3 = the exceptional divisor
of mg and let L = m3(Fy + lop + mo). Let ¢ be the morphism defined by the
complete linear system |L|. By the definition of S, the proper transform of Cj
in S'is C and C ~ 6L — 2E; — 2Ey — 2E3. Moreover C; = ¢(C) is a (singular)
plane curve model of C' such that deg(Cy) = 6 and ¢ : C — C; C P? is a
normalization map. By elementary arguments, we have that g is given by a cut
out of the lines which pass through one of the singular point of C; C P? because
this linear system corresponds to the linear system |L — Ei|. As K¢ — g} ~
Ks+C—(L—-E)C, Kc —gi ~Ks+C—(L—E)|C ~ 2L — Ey — E3|C
and dim|K¢ — gi| = dim|2L — E» — E3| = 3. Hence |K¢ — gj| is birationally
very ample but not very ample because L. — E; — Fy contracts to one point, so
|Kc—g) — (L —Ey— E5|C)| gives ¢ : C — P? and ¢(C) is a (singular) plane curve
of C such that deg(¢(C)) = 6. We put D = L — E; — F»|C. Let k} € W}(O)
be such that g} # ki. Then dim|gj + ki| = 3. Hence dim|K¢ — g} — ki| = 1.
Therefore dim|K¢c — g — ki — D| = 0 by the above. This implies that every
ki € W(C) such that k} # g} is given by a cut out of the lines which pass
through one of a singular points of ¢(C). Now we assume that g = 8. We put
S =T, and 7 = 7y, let £y = mg, Es =g and let L = Fy+ g+ mg. Let ¢ be the
morphism defined by the complete linear system |L|. By the definition of S, the
proper transform of Cy in S is C and C ~ 6L — 2E; — 2E5. Moreover C; = ¢(C)
is also a (singular) degree 6 plane curve model of C' and ¢ : C — C; C P? is a
normalization map and we have that g} is given by a cut out of the lines which
pass through one of the singular point of C; C P? because this linear system
corresponds to the linear system |L — Ey|. As Ko — g ~ Kg +C — (L — E4)|C,
Kc—g3 ~ Ks+C—(L—E)|C ~ 2L — E5|C and dim|K¢ — gf| = dim|2L — Ey| =
4. Hence |K¢ — gj| is birationally very ample but not very ample because E;
contracts to one point, so | K¢ — g5 — (E1|C)| gives a birational morphism C' — P?
because C' is not hyperelliptic, not trigonal and not elliptic-hyperelliptic. As
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Kc—gi—(El‘C) ~ 2L—E1—E2|C, dlm|Kc—gi—(E1‘C)‘ = dim‘2L—E1—E2| =3
and L — E) — E» is contracted to one point by the linear system [2L — Ey — Es|,
C — P3 is not very ample. Therefore we have a morphism ¢ : C — P? and
¢(C) is a (singular) plane curve of C such that deg(¢(C)) = 6. We put D =
L — By — B5|C. Let k} € W}(C) such that gi # k}. Then dim|g} + k}| = 3.
Hence dim|K¢ — gi — ki| = 2. Therefore dim|K¢c — g} — ki — D| = 0 by the above.
This implies that every ki € W}(C) such that ki # g} is given by a cut out of
the lines which pass through one of a singular points of ¢(C). O

We now prove the following lemma:

Lemma 2. Let C — ¢(C) C P? be a singular plane curve model of
C constructed as above. Let P € ¢(C) C P? be a singular point and let k} be
a tetragonal linear system given by a cut out of the lines which pass through P.
Then (e1,e2,e3) = (2,1,1), (2,2,0) or (3,1,0) if g =7 and (e1,e2,e3) = (3,1,1) or
(2,2,1) if g =8. And k} € WL(C) is reduced point if and only if P is ordinary
node or ordinary cusp. Moreover P is ordinary node or ordinary cusp if and only
if (ex(k), ea (L), es(k)) = (2,1,1) if g=7 and (1 (kL), ea(k1), es(kD)) = (22,1) if
g=8. P is 2-fold node or 2-fold cusp if and only if (e1(k}), e2(k}), e3(k})) = (2,2,0)
if g=7, (e1(k}),ea(ki), es3(k})) = (3,1,1) if g=8. P is 3-fold node or 3-fold cusp
if and only if (e1(k}),ea(k}), es(k})) = (3,1,0) if g=7.

Proof. Let ¢; = e;(k}) (i=1,2,3). We first assume that g=7. By Corol-
lary 1, the possibilities are (e, e92,e3) = (2,2,0),(3,1,0),(2,1,1). By Theorem 8,
we have that dimWj}(C) = 0. Therefore k} € W}(C) is reduced point if and
only if k} is of type (2,1,1) by Theorem 7. Hence we only have to prove that
dimI"(C,O(2k})) = 3 if and only if P is ordinary node or ordinary cusp. Let
¥ = P1aharhs where ¢ : S; — P? is a blowing-up at Py = P € P?, by : S — S}
is a blowing-up at P, € S1 and ¥3 : S — Sy is a blowing-up at P, € S5 such
that Fy = (ot)3)*(FY), Fo» = ¢5(F3) where FJ is the exceptional divisor of 1y,
F is the exceptional divisor of 1); and Fj is the exceptional divisor of ¢3. As
ki =L — Fy|C, so we have

0— O@2L —2F, — C) — O2L — 2F) — O¢(2k}) — 0.

and 2L — 2F) — C ~ —4L + 2F5 + 2F3 because C' ~ 6L — 2F} — 2F5 — 2F3. As
4L —2F,—2F3 is linearly equivalent to some effective divisor, we have h?(S, O(2L—
2F — C)) = 0. By Serre’s duality, h?(S,O(2L — 2F; — C)) = h%(S,O(L + F; —
F, — F3)). By Definition A, P is an ordinary node or an ordinary cusp if and
only if P, ¢ F{, P is a 2-fold node or a 2-fold cusp if and only if P; € F] but
Py ¢ ¢5F] and P is a 3-fold node or a 3-fold cusp if and only if P, € F| and
P, € ¢3F]. Hence we have that P is an ordinary node or ordinary cusp if and
only if h°(S1, O(L + Fy — F» — F3)) = 1 and P is an r-fold node or an r-fold cusp
(r = 2,3) if and only if h(Sy, O(L+F,—F,—F3)) = 2. As h%(S,0(2L—2F)) = 3
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and h%(S,0(2L — 2F})) = h%(S,0(=5L + 3F; + Fy + F3)) = 0 (by Seerre’s
duality and 5L — 3F} — F» — F3 is linearly equivalent to an effective divisor), we
have h'(S,O(2L — 2F})) = 0 by Riemann-Roch’s Theorem (see Hartshorne [9]
p. 362 Theorem 1.6). Therefore P is an ordinary node or an ordinary cusp
if and only if (e1,e2,e3) = (2,1,1) and P is an r-fold node or an r-fold cusp
(r = 2,3) if and only if (e1,e2,e3) = (3,1,0),(2,2,0). By the same calculation,
we have that (e1,eq,e3) = (3,1,0) if and only if h%(S,O(3L — 3F, — C)) =
hO(S,0(2F, — F» — F3)) = 1. Hence (e1,ez2,e3) = (3,1,0) if and only if P is
a 3-fold node or a 3-fold cusp. We now assume that g=8. By Corollary 1,
the possibilities are (e, es,e3) = (3,2,0),(3,1,1),(2,2,1). As dimW}(C) = 0.
Therefore k} € W}(C) is reduced point if and only if k} is of type (2,2,1) or
(3,1,1) by Theorem 7. And dimI'(C, O(2k})) = 3 if and only if P is an ordinary
node or an ordinary cusp. So we first prove that dimI'(C,O(2k})) = 3 if and
only if k} is of type (2,2,1). Let ¢ = th14hy where 9y : Sy — P? is a blowing-up
at Py =P € P? 9y : Sy — S is a blowing-up at P; € S; such that F} = 3 (FY)
where F] is the exceptional divisor of 11, F is the exceptional divisor of 1. As
k} =L — Fy|C, so we have

0— O(3L —3F, — C) — O(BL — 3F)) — Oc(3k}) — 0.

and 3L — 3Fy — C ~ —3L — F} 4+ 2F5 because C ~ 6L — 2F; — 2F5. We have
h°(S,O(3L — 3F; — C)) = 0 and by Serre’s duality, h?(S,O(3L — 3F; — C)) =
h°(S,O(2F; — Fy)). As P is an ordinary node or an ordinary cusp, h?(S, O(2F; —
F3)) = 0. Therefore we have that h'(S,O(3L —3F; — C)) = 1. As h%(S,O(3L —
3F)) = 4 and h%(S,O03L — 3F)) = h°(S,0(—6L + 4F; + F,)) = 0, we have
h*(S,O(3L — 3F)) = 0 by Riemann-Roch’s Theorem. Therefore we have that
dimI'(C,O(3k})) = 5. Hence kj is of type (2,2,1). And (ej, ez, e3) = (3,2,0) if
and only if P is a 2-fold node or a 2-fold cusp by the same calculation. O

Proof of Corollary A. We now prove Corollary A. By Theorem 6,
we may assume that C' is a non-singular curve of genus g = 7,8 or 9. We
have already assumed that C' is a tetragonal curve i.e. neither hyperelliptic nor
trigonal and admits a tetragonal (base-point-free) linear system gj. Moreover we
assume that C is not an elliptic-hyperelliptic curve. If there is only one g} on
C, there is nothing to prove. So we may assume that there are g}, hj € W}(O)
such that g # hl. If g = 7 or 8, then Corollary A holds by Theorem A.
Therefore the remaining case is g=9 case. But in this case, if #W](C) > 2,
then we have an embedding C' — P! x P!, In this case one easily proves that
RO(C,O(K¢c —3g})) = h°(P! x P!, O(—1+2m)) = 0, thus the invariants of g} are
(2,2,2). Therefore the e-numbers of any ki € W} (C) are the same and equal to
(2,2,2). This proves Corollary A. O
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