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WHEN DOES A BOUNDED DOMAIN COVER A
PROJECTIVE MANIFOLD?

(SURVEY)

Azniv Kasparian∗

Communicated by I. Dolgachev

Abstract. The present survey introduces in some classical properties
of the universal coverings of the projective algebraic manifolds. All the
results are non-original. A forthcoming note is intended to discuss the
corresponding fundamental groups.

In complex dimension 1, all the bounded, simply connected domains are

biholomorphic to the unit disk, according to Riemann Mapping Theorem (cf.

[31]). As a consequence, they admit projective discrete quotients with ample

canonical bundles. Conversely, Riemann Uniformization Theorem (cf. [1] or [34])

asserts that all the complex projective curves with ample canonical bundle are

covered by the disk.
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Actually, for a bounded domain D and a discrete fixed point free subgroup

Γ of biholomorphic automorphisms of D, the quotient X = Γ \ D is a projective

algebraic manifold if and only if it is compact. The projective manifolds are,

certainly, compact. Conversely, the canonical bundle KX of a compact X = Γ\D

is ample, as far as its first Chern class is represented by the Kähler form of the

Bergman metric on D (cf. [36]). Thus, Kodaira Embedding Theorem implies the

projectiveness of X, i.e., the existence of holomorphic sections of a sufficiently

high power K⊗n
X of KX , separating the points and the tangent directions on X.

Explicit lower bounds on the number of the linearly independent holomorphic

sections of K⊗n
X for comparatively small n ∈ N, can be found in Kollár’s [24], [25].

The existence of projective embeddings of the compact quotients of the bounded

domains can be justified directly by construction of automorphic forms (cf. [12],

[25]).

A sort of higher dimensional generalizations of the disk are the bounded

symmetric domains, i.e., the bounded homogeneous domains whose origin (and

therefore, any point) is an isolated fixed point of an involutive biholomorphism.

Recall that the Riemannian (Hermitian) globally symmetric spaces of noncompact

type, consisting of the isolated fixed points of (holomorphic) involutive isometries,

are quotients G/K of noncompact semisimple Lie groups G by maximal compact

subgroups K ⊂ G. The bounded symmetric domains are exactly the Hermitian

globally symmetric spaces of noncompact type (cf. [17]).

In [3] Borel has constructed compact discrete quotients of the Riemannian

globally symmetric spaces G/K of noncompact type, and called them compact

Clifford-Klein forms. In order to formulate precisely, let us recall few definitions.

Definition 1. (i) A lattice Γ of a locally compact group G is a discrete

subgroup Γ ⊂ G, whose quotient Γ \ G admits a finite invariant measure. The

lattices with compact Γ \ G are called uniform.

(ii) An algebraic group G is a subgroup of some GL(n, C), defined as

a zero set of polynomials in {Xi,j}
n
i,j=1, detX−1 (X ∈ GL(n, C)) with complex

coefficients. Whenever the defining polynomials of G have rational coefficients,

G is said to be defined over Q. For a C-vector space V and a subring S ⊂ C, let

VS ⊂ V be the S-submodule, generated by a basis of V, and GS := {g ∈ G|gVS =

VS}. An arithmetic subgroup Γ of an algebraic group G defined over Q, is any

subgroup Γ ⊂ GQ commensurable with GZ, i.e., having an intersection Γ∩GZ of

finite index in Γ and GZ .

The following are classical results for lattices in semisimple Lie groups:
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Theorem 2. (i) (Borel and Harish-Chandra [5], [6], or [4]) Let G

be a connected semisimple algebraic group defined over Q. Then any arithmetic

subgroup Γ ⊂ GR is a lattice of GR.

(ii) (Borel [3]) Any connected noncompact simple Lie group G1 has a

uniform lattice.

For the proof of (i), it suffices to construct a subset U ⊂ GR with a

finite invariant measure, such that GR = UGZ. Let At ⊂ SL(n, R) be the set

of the diagonal matrices with 0 ≤ ai,i ≤ tai+1,i+1, 1 ≤ i < n for some t ≥ 2√
3
,

and Nu ⊂ SL(n, R) be the set of the upper triangular unipotent matrices with

|ni,j| ≤ u, 1 ≤ i < j ≤ n for some u ≥ 1

2
. It is well known that the Siegel domains

St,u = SO(n)AtNu of SL(n, R) have finite invariant measures and SL(n, R) =

St,uSL(n, Z), i.e., SL(n, Z) is a lattice of SL(n, R). Regarding G as a subgroup of

SL(n, C), Borel and Harish-Chandra establish the existence of a ∈ SL(n, R) and

b1, . . . , bm ∈ SL(n, Z) such that GR = Interior

(
m
∪

i=1
a−1St,ubi ∩ a−1GRa

)
GZ.

The argument continues by showing that a Siegel domain S(GR) of a semisim-

ple algebraic group GR has a finite invariant measure, and the intersections

St,ubia
−1 ∩ GR are contained in finite unions of right GR-translates of S(GR).

Concerning (ii), the crucial step is to establish the existence of a Lie sub-

algebra gQ ⊂ g = LieG1 over Q and a Q-linear involution θQ : gQ → gQ such that

g = gQ ⊗Q R and θQ extends to a Cartan involution of g. Let gu be the compact

real form of g and G = g ⊕ gu. By the means of an appropriately chosen basis

of G, Borel identifies GC = G ⊗R C with Cn and considers the algebraic group

G := Aut(GC) ⊂ GL(n, C), defined over Q and consisting of the Lie algebra au-

tomorphisms of GC. Whenever the identity component G0 of G does not admit

a nontrivial rational character G0 → C∗ and GQ consists entirely of semisimple

elements, the arithmetic lattices Γ ⊂ GR are uniform. The aforementioned com-

pactness criterion for Γ \GR with a reductive algebraic G defined over Q, is due

independently to Borel and Harish-Chandra [5], [6], as well as to Mostow and

Tamagawa [27]. Since the identity component G0
R of GR has a surjective homo-

morphism ϕ : G0
R → G1 with a compact kernel Gu, LieGu = gu, the uniform

arithmetic lattices Γ ⊂ G0
R supply uniform lattices Γ1 := ϕ(Γ) ⊂ G1.

Borel’s Existence Theorem 2.(ii) implies, in particular, that all the boun-

ded symmetric domains G/K cover projective algebraic manifolds Γ\G/K after,

eventually, replacing Γ by a normal torsion-free subgroup Γ′ ⊂ Γ of finite index.

Let X be a compact complex algebraic manifold X of an arbitrary

dimC X = n. Locally, Griffiths [16] has established that an arbitrary smooth
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point x ∈ X has a Zariski open neighborhood U ⊂ X, covered by a bounded

contractible pseudoconvex domain in Cn (cf. Definition 7). In the case of an al-

gebraic surface X, by further removing of divisors from U, Shabat [32] proves the

existence of a Zariski open neighborhood, whose universal covering has a discrete

biholomorphism group.

Globally, quite a lot of projective algebraic manifolds X are not covered

by bounded domains. All compact complex manifolds X with finite fundamen-

tal groups π1(X) have compact universal coverings which, obviously, cannot be

biholomorphic to domains in Cn. Campana [8] shows that if a compact Kähler

manifold X with χ(OX) :=
n∑

i=0

(−1)ih0,i(X) 6= 0, dimC X = n ≥ 2, does not

coincide with the union of its irreducible compact complex analytic subspaces Y

of 0 < dimC Y < n, then the fundamental group π1(X) is finite and of cardinality

at most 2n−1.

Prominent achievements in the study of the compact complex manifolds

with ample canonical bundle are Frankel-Nadel’s Uniformization results :

Theorem 3. Let M̃ be the universal covering of the compact complex

manifold M with ample canonical bundle and Aut(M̃) be the biholomorphism

group of M̃.

(i) (Nadel [28]) The identity component G = Aut(M̃ )o of Aut(M̃ ) is a

real semisimple Lie group without compact factors.

(ii) (Frankel [15], [14]) There is a splitting M̃ = M1×M2 into a product

of a Hermitian globally symmetric space M1 = G/K (K - maximal compact

subgroup of G ) and a simply connected complex manifold M2 with a discrete

biholomorphism group Aut(M2). The fundamental group π1(M) has a finite index

subgroup Γ1 × Γ2 where Γ1 is a uniform lattice of G and Γ2 is a finite index

subgroup of Aut(M2).

The opposite of statement (i) is equivalent to the presence of a nontrivial

solvable radical R 6= 0 of LieG. Let V1, . . . , Vr be an R-basis of the last term

DkR 6= 0 in the derived series of R. Making use of the semistability of the

holomorphic tangent bundle of M, Nadel shows the linear dependence of V1, . . . , Vr

over the field of the meromorphic functions on M̃. Then bearing in mind that

V1, . . . , Vr are commuting vector fields on M̃, whose real parts are infinitesimal

isometries for the complete Kähler-Einstein metric g̃ on M̃, he derives the indef-

initeness of the Ricci form Ricci(g̃) of g̃. On the other hand, Ricci(g̃) has to be

a negative constant multiple of the Kähler form of g̃, so that the contradiction

implies DkR = 0, i.e., the semisimplicity of LieG.
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Towards the uniformization splitting of M̃, announced in (ii), Fran-

kel establishes the existence of a G-equivariant harmonic map

f : M → π1(M) ∩ G \ G/K. The proof is based on the non-increasing of the

energy density under averaging. Moreover, the results of [9] imply that the har-

monic submersion f with a locally symmetric target has to be a holomorphic map

onto a Hermitian locally symmetric space, and the isotropy subgroups Ix ⊂ G

of all points x ∈ M̃ are maximal compact, i.e., Ix ≃ K. For the product of

an orbit Orb(x) = G(x) ≃ G/Ix and the fixed point set Fix(Ix) of the associ-

ated stabiliser, Frankel shows in [14] that the map Φ : Orb(x) × Fix(Ix) → M̃,

given by Φ(gx, y) = gy, is a biholomorphism onto M̃. The assertion of (ii) on

the fundamental group π1(M), is equivalent to the finiteness of the image of the

extension homomorphism Ext : π1(M) ∩ G \ π1(M) → Out(π1(M) ∩ G) in the

outer automorphisms of π1(M)∩G. As far as both Image(Ext) ⊂ Adπ1(M) act

on G, normalizing π1(M) ∩ G, and can be embedded in G, the image of Ext

appears to be a subgroup of Aut(π1(M)∩G\G/K), which is finite by a theorem

of Bochner-Yano.

Let us make a brief overview of Nadel’s [28] and Frankel’s [15] articles. In

[10], [11] H. Cartan proves that the group of the biholomorphic automorphisms

of a bounded domain D is a locally compact real Lie group (cf. also [29]). As

a consequence, Aut(D) has at most countably many connected components and

the orbits of each component are closed subsets of D. These two observations

are exploited by Shabat in his Ph.D. Thesis [32]. Nadel’s Special Uniformiza-

tion Theorem in dimension two is a generalization of Shabat’s results, obtained

independently of them.

Definition 4. (i) Let D be a bounded domain and Γ ⊂ Aut(D),

be a discrete subgroup of biholomorphic automorphisms of D. A Γ-fundamental

domain F on D is a connected subset F ⊂ D, containing a single point from each

Γ-orbit on D. With respect to an arbitrary Aut(D)-invariant metric ρ on D, one

can construct a Dirichlett fundamental domain

F (z0) := {z ∈ D | ρ(z, z0) < ρ(z, γz0), ∀1 6= γ ∈ Γ},

centered at z0 ∈ D.

(ii) A discrete group Γ acts properly discontinuously on the locally compact

space Y if any point y ∈ Y has a neighborhood Uy such that {γ ∈ Γ|γ(Uy)∩Uy 6=

Ø} is finite.

Any quotient Γ \ Y of a complex analytic space Y by a properly dis-
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continuously acting group Γ, inherits the complex analytic structure of Y by

announcing Y → Γ \ Y to be holomorphic. If D is a bounded domain then any

discrete subgroup of Aut(D) is known to act properly discontinuously.

Theorem 5. (i) (Shabat [32]) The universal covering of a family

S → R of (eventually open) Riemann surfaces, covered by the disk, over a

(not necessarily closed) Riemann surface R, covered by the disk, is a bounded

contractible domain D. If D is not symmetric then its biholomorphism group

Aut(D) is discrete and the index of π1(S) in Aut(D) is bounded by the ratio

vol(F )

vol(B( r
2
))

,

where r is the minimal distance between a pair of points from an Aut(D)-orbit,

B( r
2
) is a ball of radius r

2
, F is a π1(S)-fundamental domain on D and all the

distances and volumes are calculated with respect to the Bergman metric of D.

(ii) (Nadel [28]) Let S be a compact complex surface with ample canonical

bundle. Then either the universal covering S̃ is biholomorphic to the 2-ball or

the bi-disk, or its biholomorphism group Aut(S̃) is discrete, acts properly dis-

continuously on S̃, and contains the group of deck transformations as a subgroup

of finite index.

The compact Clifford-Klein forms of the Hermitian symmetric spaces real-

ize the bounded symmetric domains as universal coverings of projective algebraic

manifolds. The presence of non-symmetric bounded domains with compact dis-

crete quotients is illustrated by the next

Example 6. (Kodaira [21], Atiyah [2], Shabat [32]) There exist compact

complex surfaces, namely, the Kodaira surfaces Mn,m, whose universal coverings

are bounded contractible domains with discrete biholomorphism groups.

The Kodaira surfaces Mn,m are constructed independently by Kodaira

[21] and Atiyah [2]. Let R0 be a Riemann surface of genus n ≥ 2, and R be an

unramified double covering of R0 with genus g = 2n−1 and involution σ : R → R,

interchanging the sheets of R → R0. For an arbitrary m ∈ N, let us consider the

group homomorphism Φ : π1(R) → (Zm)2g, transforming the standard a- and b-

cycles on R to generators of the Zm-factors.The Riemann surface S with π1(S) =

Kernel(Φ), is an m2g-sheeted covering π : S → R of genus(S) = m2g(g − 1) + 1.

From the product W = S ×R one removes the graphs of π and σπ to obtain W ′.

The homologies Hc
1(W

′, Z) with compact support are proved to decompose into

a direct sum

Hc
1(W

′, Z) = Hc
1(R, Z) + Hc

1(S, Z) + Zm,
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where Zm is generated by the bounding circle of a small disk on s0×R, for a fixed
s0 ∈ S. Now, the epimorphism Ψ : π1(W

′) → Zm determines an m-fold covering
M ′ → W ′. The completion M = Mn,m → W is a branched covering of W, whose
ramification locus consists of the graphs of π and σπ. Explicit calculation of the
Chern numbers reveals that

2 <
c2
1(Mn,m)

c2(Mn,m)
= 2 +

m2 − 1

m2(2n − 1) − m
< 3 for n ≥ 2,m ≥ 1.

According to Hirzebruch’s Proportionality Principle [18], the compact quotients
of the bi-disk have c2

1 = 2c2, while the compact quotients of the 2-ball are char-
acterized by c2

1 = 3c2 (cf. also [38]). Thus, for any n ≥ 2 and m ≥ 1 the Kodaira
surface Mn,m is not covered by a bounded symmetric domain in C2. Shabat’s
Thesis [32] implies that the universal coverings of Mn,m are bounded contractible
domains with discrete biholomorphism groups. Kas [19] has shown that the de-
formations of the complex structure of the Kodaira surfaces, are unobstructed.
That is one more way of justifying that Mn,m are not covered by the 2-ball.

Let us return to the unit disk ∆ ⊂ C and observe that it is geometrically
convex, i.e., with any pair of points, it contains the entire real line segment
between them.

Definition 7. (i) If the domain D = {z ∈ Cn|ρ(z) < 0} has a defining
function ρ : Cn → R of class C2, then D is geometrically convex exactly when

Re




n∑

j,k=1

∂2ρ

∂zj∂zk
(z)wjwk


 +

n∑

j,k=1

∂2ρ

∂zj∂zk
(z)wjwk ≥ 0

for all boundary points z ∈ ∂D and real tangent vectors

w ∈ T R
z (∂D) :=



w ∈ C

n |
n∑

j=1

∂ρ

∂zj
(z)wj +

n∑

j=1

∂ρ

∂zj
(z)wj = 0



 .

(ii) A domain D = {z ∈ Cn|ρ(z) < 0} with a C2 boundary is called
pseudoconvex (resp., strictly pseudoconvex) if

n∑

j,k=1

∂2ρ

∂zj∂zk
(z)wjwk ≥ 0( resp., > 0)

for all boundary points and complex tangent vectors

w ∈ T C
z (∂D) :=



w ∈ C

n |
n∑

j=1

∂ρ

∂zj
(z)wj = 0



 .
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It is straightforward that the geometric convexity is not invariant under

biholomorphisms. Any geometrically convex domain of class C2 is pseudoconvex.

The pseudoconvexity is a biholomorphic invariant, equivalent to the so called

Kontinuitätssatz: If ϕα : ∆ → Cn, α ∈ A is a family of nonconstant holomorphic

maps of the unit disk, extending continuously to the closure ∆, and the union

of the boundaries ∪ϕα(∂∆) is compactly embedded in D, then the union of the

closed analytic disks ∪ϕα(∆) is also compactly embedded in D (cf. [26]).

The pseudoconvexity characterizes the domains of holomorphy, without

involving the notion of a holomorphic function. By definition, a domain D ⊂ Cn

is called a domain of holomorphy if there is a holomorphic function on D, which

cannot be analytically continued to a strictly larger domain D̂. It is well known

that any domain of holomorphy with a C2 boundary is pseudoconvex and any

pseudoconvex domain is a domain of holomorphy (Levi problem). Our interest

in the pseudoconvex domains is based on a classical result of Siegel [33] that

the bounded domains which admit compact discrete quotients are domains of

holomorphy.

Definition 8. For a domain Do = {z ∈ Cn|ρo < 0} with a smooth

boundary (i.e., gradρo|∂Do
6= 0), let ε > 0 be sufficiently small such that any

smooth function ρ : Cn → R with ‖ρ − ρo‖C∞ < ε defines a domain

Dρ := {z ∈ Cn|ρ(z) < 0} with a smooth boundary. The set of domains

Uε(Do) = {Dρ ⊂ Cn|‖ρ − ρo‖C∞ < ε} is called an ε-neighborhood of Do in

the C∞ topology.

In a vast distinction with the case of one complex variable, there exist

bounded domains D ⊂ Cn, n ≥ 2 which do not admit compact discrete quotients.

Theorem 9. (Burns, Shneider and Wells [7]) For any bounded strictly

pseudoconvex domain Do ⊂ Cn, n ≥ 2 with a smooth boundary and a sufficiently

small ε > 0, there exists an infinite dimensional family of non-biholomorphic to

each other domains D ∈ Uε(Do) with Aut(D) = 1 for D 6= Do. In particular,

such D do not cover compact complex analytic varieties.

The biholomorphism classes of D ∈ Uε(Do) are distinguished by the means

of the diffeomorphism classes of their boundaries, according to the following

Theorem 10. (Fefferman [13]) Any biholomorphism Φ : D1 → D2

of bounded strictly pseudoconvex domains D1,D2 ⊂ Cn with smooth boundaries,

extends to a smooth diffeomorphism Φ : ∂D1 → ∂D2 of their boundaries.
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The rough idea of the proof of Theorem 9 is that the defining functions

of generic Dρ1
,Dρ2

∈ Uε(Do) cannot be matched by a smooth extension Φ of a

biholomorphism, since the nontrivial terms from the Taylor expansions of ρ1 and

ρ2 are considerably more than the ones from the expansion of Φ.

In certain classes of bounded domains, the only members which admit

compact discrete quotients are the bounded symmetric ones. Wong [37] shows

that if a bounded strictly pseudoconvex domain D ⊂ Cn with a smooth boundary

covers a compact complex analytic space, then D is biholomorphic to the ball

B1,n ⊂ Cn. Similarly, the bounded convex domains which admit compact discrete

quotients are bounded symmetric, according to Frankel [14].

Theorem 11. (i) (Vey [35]) Let D ⊂ Cn × Cm be an S-domain or

a Siegel domain of exponent c ∈ R (cf. [20]). Namely, D is biholomorphic to a

bounded domain, contains a point (z0, 0), and is invariant under the following

holomorphic transformations:

(i) (z,w) 7→ (z + a,w) ∀a ∈ Rn;
(ii) (z,w) 7→ (z, eitw) ∀t ∈ R;
(iii) (z,w) 7→ (etz, ectw) ∀t ∈ R.

Then D covers a projective manifold if and only if it is bounded symmetric. In

particular, the only bounded circular domains with compact discrete quotients are

the bounded symmetric ones.

(ii) (Kodama [22], [23]) Let D ⊂ Cn × Cm1 × . . . × Cmk be a generalized

S-domain of exponent (c1, . . . , ck) ∈ Rk around (z0, 0, . . . , 0), i.e., D is biholo-

morphic to a bounded domain and invariant under the following holomorphic

transformations:

(i) (z,w1, . . . , wk) 7→ (z + a,w1, . . . , wk) ∀a ∈ Rn;
(ii) (z,w1, . . . , wk) 7→ (z, . . . , wl−1, e

itwl, wl+1, . . .) ∀t ∈ R, 1 ≤ l ≤ k;
(iii) (z,w1, . . . , wk) 7→ (etz, ec1tw1, . . . , e

cktwk) ∀t ∈ R.

Then D admits a compact discrete quotient Γ \ D, Γ ⊂ Aut(D), if and only if it

is bounded symmetric.

Let us compare with Wong [37] and Rosay’s [30] result that a bounded

strictly pseudoconvex domain D0 ⊂ Cn with a smooth boundary covers a compact

complex analytic variety if and only if its biholomorphism group Aut(D0) is

noncompact. Theorem 11, illustrates that the non-compactness of Aut(D) is, in

general, insufficient for the existence of projective or quasiprojective quotients.
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