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SHARP BOUNDS ON THE NUMBER OF RESONANCES FOR

SYMMETRIC SYSTEMS II. NON-COMPACTLY SUPPORTED

PERTURBATIONS

G. Vodev

Communicated by V. Petkov

Abstract. We extend the results in [5] to non-compactly supported perturba-
tions for a class of symmetric first order systems.

The purpose of this note is to extend the results obtained in [5] to non-compactly

supported perturbations. Consider in R
n, n ≥ 3 odd, a first order matrix-valued diffe-

rential operator of the form
∑n

j=1 A0
jDxj , A0

j being constant Hermitian d× d matrices,

and denote by G0 its selfadjoint realization on H = L2(Rn;Cd). Suppose that the

matrix A(ξ) =
∑n

j=1 A0
jξj, ξ ∈ R

n \ 0, is invertible for all ξ, i.e. the operator G0 is an

elliptic one. Consider the operator
∑n

j=1 Aj(x)Dxj +B(x), where Aj(x) ∈ C1(Rn,Cd),

B(x) ∈ C0(Rn,Cd) satisfy for |x| ≫ 1:

n
∑

j=1

|Aj(x) − A0
j | + |B(x)| ≤ Ce−γ〈x〉1+ε

, C, γ, ε > 0,

where 〈x〉 = (1 + |x|2)1/2. Suppose that this operator admits an unique elliptic

selfadjoint extension (denoted by G) on H. As we shall see later on, for any a ≫ 1, the

modified resolvent

Ra(z) = e−a〈x〉(G − z)−1e−a〈x〉 : H → H
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admits a meromorphic continuation from ℑz < 0 to ℑz < C1a with some constant

C1 > 0 independent of a. The poles of this continuation are called resonances and the

multiplicity of a resonance λ ∈ C, ℑλ < C1a, is defined as the rank of the residue

of Ra(z) at z = λ. As in [1], one sees that these definitions are independent of a.

Denote by N(r) the number of the resonances of G, counted with their multiplicities,

in {z ∈ C : |z| ≤ r}. Our main result is the following theorem.

Theorem. Under the above assumptions, the counting function N(r) satisfies

the bound

(1) N(r) ≤ Crn(1+ε)/ε + C,

with some constant C > 0 independent of r.

Remark. Such a bound has been recently obtained by Sa Barreto and Zworski

[1] for the Shrödinger operator, while for metric perturbations of the Laplacian they

have obtained a more rough but still polynomial upper bound. Their method however

uses essentially the fact that the free operator is the Laplacian and no longer works for

general symmetric systems.

P r o o f. Denote by R0(z) the outgoing free resolvent of G0 defined for ℑz < 0

by

R0(z) = −i

∫ ∞

0
e−itzeitG0dt.

Let us first see that the operator

R0,a(z) = e−a〈x〉(G0 − z)−1e−a〈x〉 : H → H

admits an analytic continuation from ℑz < 0 to ℑz < C1a with some C1 > 0 indepen-

dent of a, and

(2) ‖R0,a(z)‖ ≤ C/a, ℑz < C1a,

where ‖ · ‖ denotes the norm in L(H,H). In view of Huygens’ principle there exist

C ′, C ′′ > 0 such that

χ(|x| ≤ C ′t)eitG0χ(|x| ≤ C ′′t) = 0

for t > 0 where χ(M) denotes the characteristic function of M . Hence,

‖e−a〈x〉eitG0e−a〈x〉‖ ≤ ‖e−a〈x〉χ(|x| ≥ C ′t)eitG0e−a〈x〉‖

+ ‖e−a〈x〉χ(|x| ≤ C ′t)eitG0χ(|x| ≥ C ′′t)e−a〈x〉‖ ≤ 2e−Cat,

which gives

‖R0,a(z)‖ ≤ 2

∫ ∞

0
etℑz−Catdt ≤ 2

∫ ∞

0
e−Cat/2dt ≤ C ′′′/a,
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provided ℑz < Ca/2, which implies (2) with C1 = C/2.

Choose functions χ̃1, χ̃2 ∈ C∞
0 (Rn), χ̃1 = 1 for |x| ≤ 1, χ̃1 = 0 for |x| ≥ 2,

χ̃2 = 1 for |x| ≤ 3, χ̃2 = 0 for |x| ≥ 4, and set χ1 = χ̃1(x/r), χ2 = χ̃2(x/r), where

r = C2a
1/ε with C2 > 0 to be chosen later on. Set also Vj = (1−χj)(G0 −G), j = 1, 2.

For ℑz < 0, following [2], [3], we have

(G − z)(1 − χ1)R0(z)(1 − χ2)

= 1 − χ2 − [G,χ1]R0(z)(1 − χ2) − V1R0(z)(1 − χ2).

Combining this with the identity

1 = (G − z)R(z0) + (z − z0)R(z0),

where z0 = −iC3a, with a constant C3 > 0 to be chosen later on, we obtain

1 = (G − z)(R(z0) + (z − z0)(1 − χ1)R0(z)(1 − χ2)R(z0))

(3) +(z − z0)χ2R(z0) + (z − z0)[G,χ1]R0(z)(1 − χ2)R(z0)

+(z − z0)V1R0(z)(1 − χ2)R(z0).

On the other hand,

(G0 − z0)(1 − χ2)R(z0) = 1 − χ2 − [G0, χ2]R(z0) − V2R(z0),

that is,

(4) (1 − χ2)R(z0) = R0(z0)(1 − χ2) − R0(z0)[G0, χ2]R(z0) − R0(z0)V2R(z0).

By (3) and (4) we get for ℑz < 0:

R(z)(1 − (z − z0)χ2R(z0) − ([G,χ1](R0(z) − R0(z0)) − (z − z0)V1R0(z0)R0(z))

(1 − χ2 − [G0, χ2]R(z0) − V2R(z0)))

= R(z0) + (1 − χ1)(R0(z) − R0(z0))(1 − χ2 − [G0, χ2]R(z0) − V2R(z0)).

Multiplying the both sides of this identity by e−a〈x〉 gives

(5) Ra(z)(1 − K(z)) = K1(z),

where K(z) = K2(z) + K3(z) + K4(z),

K1(z) = Ra(z0) + (1 − χ1)(R0,a(z) − R0,a(z0))K5,
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K2(z) = (z − z0)χ2e
a〈x〉R(z0)e

−a〈x〉,

K3(z) = ea(1+δ)〈x〉[G,χ1](R0,aδ(z) − R0,aδ(z0))e
−a(1−δ)〈x〉K5,

K4(z) = (z − z0)e
a〈x〉V1R0(z0)e

a〈x〉R0,a(z)K5,

K5 = 1 − χ2 − [G0, χ2]e
a〈x〉R(z0)e

−a〈x〉 − ea〈x〉V2R(z0)e
−a〈x〉.

Observe now that

(6) ‖eαa〈x〉R(z0)e
−αa〈x〉‖L(H,Hs) ≤ C ′as−1, s = 0, 1, α = ±1,

provided C3 is large enough, with some C ′ > 0 independent of a. Set

W (x) = [G, eαa〈x〉]e−αa〈x〉.

Clearly,

(7) |W (x)| ≤ C ′′a, ∀x,

with a constant C ′′ > 0 independent of a and x. We have

(G − z0)e
αa〈x〉R(z0)e

−αa〈x〉 = 1 + Weαa〈x〉R(z0)e
−αa〈x〉,

and hence

eαa〈x〉R(z0)e
−αa〈x〉 = R(z0) + R(z0)Weαa〈x〉R(z0)e

−αa〈x〉.

It follows from this representation, the ellipticity of G, and the estimate

(8) ‖R(z0)‖ ≤ (C3a)−1

that (6) with s = 1 is a consequence of (6) with s = 0. On the other hand, by the

above representation we deduce

eαa〈x〉R(z0)e
−αa〈x〉 = (1 − R(z0)W )−1R(z0),

and hence (6) with s = 0 follows from (7) and (8) provided C3 is large enough. Clearly,

an analogue of (6) holds with G replaced by G0. Moreover, K5 is bounded on H

uniformly in a, provided C2 is large enough. Thus, we conclude that K(z) is holo-

morphic in ℑz < C1a with values in the compact operators on H, K(z0) = 0. Hence,

(1 − K(z))−1 forms a meromorphic family which in view of (5) provides the desired

meromorphic continuation of Ra(z).

In view of (2) and (6) we have

‖K4(z)‖ ≤ C|z − z0| ‖(1 − χ1)e
−γ〈x〉1+ε+2a〈x〉‖
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‖eγ〈x〉1+ε−a〈x〉(G0 − G)R0(z0)e
a〈x〉‖ ‖R0,a(z)‖

≤ Ce−C′a(1+ε)/ε
≤ 1/4

for |z − z0| ≤ C̃a with C̃ = C3 + C1δ/2 and C2 large enough. Similarly,

‖K3(z)‖ ≤ ‖ea(1+δ)〈x〉 [G,χ1]‖

(‖R0,aδ(z)‖ + ‖R0,aδ(z0)‖)‖e
−a(1−δ)〈x〉K5‖

≤ C1e
a(1+δ)〈2r〉−a(1−δ)〈3r〉 ≤ 1/4,

for |z−z0| ≤ C̃a, provided δ > 0 is small enough, independent of a, and a large enough.

Hence, for |z − z0| ≤ C̃a, we have

(9) Ra(z)(1 − P (z)) = P1(z),

where

P = K2(1 − K3 − K4)
−1, P1 = K1(1 − K3 − K4)

−1.

Denote by ∆r the Dirichlet realization of the Laplacian in |x| ≤ r. In view of (6) the

characteristic values of K2 satisfy

µj(K2(z)) ≤ C|z − z0|µj((1 − ∆r)−1/2) ≤ C ′|z − z0|rj
−1/n,

and hence

(10) µj(P (z)) ≤ C ′′a(1+ε)/εj−1/n

for |z − z0| ≤ C̃a. Hence, P (z)n+1 is trace class, and by (9) and the appendix in [4] we

conclude that the resonances in |z − z0| ≤ C̃a are among the zeros of the function

ha(z) = det(1 − P (z)n+1).

By (10), for |z − z0| ≤ C̃a, we get

|ha(z)| ≤
∞
∏

j=1

(

1 + µj(P (z)n+1)
)

(11) ≤
∞
∏

j=1

(1 + Ca(n+1)(1+ε)/εj−(n+1)/n) ≤ eCan(1+ε)/ε
.

Now, since ha(z0) = 1, by Jensen’s inequality and (11) we conclude

N(C ′a) ≤ C ′′an(1+ε)/ε
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provided C ′ > 0 is small enough, which completes the proof of the theorem. �
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