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ABSTRACT. We extend the results in [5] to non-compactly supported perturba-
tions for a class of symmetric first order systems.

The purpose of this note is to extend the results obtained in [5] to non-compactly
supported perturbations. Consider in R", n > 3 odd, a first order matrix-valued diffe-
rential operator of the form 377 4 A?ij, A? being constant Hermitian d x d matrices,
and denote by Gy its selfadjoint realization on H = L*(R"™;C%). Suppose that the
matrix A(§) = > A(;fj, ¢ € R"\ 0, is invertible for all £, i.e. the operator Gy is an
elliptic one. Consider the operator 37_; A;(x)D,, + B(z), where A;(z) € C'(R", Cc?),
B(z) € CO(R", C?) satisfy for |z| > 1:

1+

> 1Aj(@) = A + [B(x)] < Ce T, Cly,e >0,
j=1

where (z) = (1 4 |z|?)"/2. Suppose that this operator admits an unique elliptic
selfadjoint extension (denoted by G) on H. As we shall see later on, for any a > 1, the
modified resolvent

Ry(2) = e %G —2) e @ . H - H
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admits a meromorphic continuation from 3z < 0 to §z < Chia with some constant
C4 > 0 independent of a. The poles of this continuation are called resonances and the
multiplicity of a resonance A € C, S\ < C}a, is defined as the rank of the residue
of R,(z) at z = A. As in [1], one sees that these definitions are independent of a.
Denote by N(r) the number of the resonances of G, counted with their multiplicities,
in {z € C: |z| <r}. Our main result is the following theorem.

Theorem. Under the above assumptions, the counting function N(r) satisfies
the bound

(1) N(r) < crmtelle L ¢

with some constant C > 0 independent of r.

Remark. Such a bound has been recently obtained by Sa Barreto and Zworski
[1] for the Shrodinger operator, while for metric perturbations of the Laplacian they
have obtained a more rough but still polynomial upper bound. Their method however
uses essentially the fact that the free operator is the Laplacian and no longer works for
general symmetric systems.

Proof. Denote by Rg(z) the outgoing free resolvent of Gy defined for Iz < 0
by

o0
Ry(z) = —i/o e~ eitCo .

Let us first see that the operator
Roa(z) = e % (Gy — 2)te™ @ . H - H

admits an analytic continuation from 3z < 0 to $z < Cia with some C; > 0 indepen-
dent of a, and

(2) | Roa(2)]| < Cla, Sz < Cha,

where || - || denotes the norm in £(H, H). In view of Huygens’ principle there exist
C’,C" > 0 such that
Xz < C')e™ (|2 < C"t) = 0

for t > 0 where (M) denotes the characteristic function of M. Hence,

Hefa(x)eitGoefa(x) H < Hefa(x)x(p:‘ > C/t)eitGoefa(@

+ e @x(fa| < Ot x(jz] = CMt)em || < 267,
which gives

00~ 00
||R0,a(Z)H < 2/ et\fszatdt < 2/ efcat/Zdt < C////(I,
0 0
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provided Sz < Ca/2, which implies (2) with C; = C/2.

Choose functions x1,x2 € Cg°(R"), x1 = 1 for |z| < 1, x1 = 0 for |z| > 2,
X2 = 1 for |z| < 3, x2 = 0 for |z| > 4, and set x1 = x1(x/7), x2 = X2(z/r), where
r = Cya'/* with Cy > 0 to be chosen later on. Set also V; = (1 —x;)(Go—G), j = 1,2.
For Oz < 0, following [2], [3], we have

(G = 2)(1 = x1)Ro(2)(1 = x2)

=1-x2 =[G, x1]Ro(2)(1 — x2) — ViRo(2)(1 — x2)-
Combining this with the identity

1= (G = 2)R(20) + (2 — 20) R(20),
where zy = —iC3a, with a constant C3 > 0 to be chosen later on, we obtain

1= (G = 2)(R(20) + (2 — 20)(1 = x1) Ro(2)(1 — x2) R(20))

(3) +(2 = 20)x2R(20) + (2 — 20)[G, x1]Ro(2)(1 — x2) R(20)

+(Z - ZO)VlRO(Z)(]. — XQ)R(Z()).
On the other hand,

(Go — 20)(1 = x2)R(20) = 1 = x2 — [Go, x2] R(20) — V2R(20),
that is,
(4) (I —=x2)R(20) = Ro(20)(1 — x2) — Ro(20)[Go, x2] B(20) — Ro(z0)VaR(20)-
By (3) and (4) we get for Sz < 0:
R(z)(1 = (z — 20)x2R(20) — (|G, x1](Ro(2) — Ro(20)) — (2 — 20)V1Ro(20) Ro(2))

(1 = x2 — [Go, x2] R(20) — VaR(20)))
= R(z0) + (1 — x1)(Ro(2) — Ro(20))(1 — x2 — [Go, x2] R(20) — V2R(20))-
Multiplying the both sides of this identity by e~%®) gives

(5) Ra(2)(1 - K(2)) = Ki(2),
where K(z) = Ky(z) + K3(2) + K4(2),

Ki(2) = Ro(20) + (1 — x1)(Ro,a(2) — Ro,a(20)) K,
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Ks(2) = (2 — 20)x2e™® R(z)e™ %),
Ks(z) = e?19)@) (G, x1](Ro.a5(2) — RO,aJ(ZO))e_a(1_5)<$>K5,
Ki(2) = (2 — 20)e*® Vi Ro(20)e*®) Rg o (2) K5,

K5 =1~ xa — [Go, x2]e"™ R(z0)e™ " — eV, R(z9)e .
Observe now that
(6) €2 R(20)e || o ey < C'a*™Y, 5=10,1, a ==+,
provided Cj is large enough, with some C’ > 0 independent of a. Set

W(z) = [@, et |eoate),
Clearly,
(7) W (x)| < C"a, Vau,
with a constant C” > 0 independent of a and x. We have
(G — 20)e®™®) R(z)e™2%®) = 1 4 We@) R(zp)e™ )

and hence
e R(20)e™%®) = R(z9) 4+ R(20)W e R(zy)e ™).

It follows from this representation, the ellipticity of GG, and the estimate

(8) IR (z0)|| < (C3a)™"

that (6) with s = 1 is a consequence of (6) with s = 0. On the other hand, by the

above representation we deduce

e®4®) R(z9)e ™™ = (1 — R(z0)W) 'R(20),

and hence (6) with s = 0 follows from (7) and (8) provided Cj is large enough. Clearly,
an analogue of (6) holds with G replaced by Gy. Moreover, K5 is bounded on H

uniformly in a, provided Cs is large enough. Thus, we conclude that K (z) is holo-
morphic in §z < Cja with values in the compact operators on H, K(zp) = 0. Hence,
(1 — K(2))~! forms a meromorphic family which in view of (5) provides the desired

meromorphic continuation of R, (z).
In view of (2) and (6) we have

IK4(2)|| < Clz — 20| ||(1 — Xl)ef'y(z>1+5+2a<x>”
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€760 =2 (G — G)Ro(20)e™ ™ | [[Roa(2)]
<Ceic/a(1+€)/s

for |z — zo| < Ca with C' = C3 + C16/2 and Cs large enough. Similarly,

<1/4

I3 (2)I] < [[e* (@, xall

(I1Ro.as ()l + | Ro as(z0) ) e =00 e
< (102 —a(1-8)3r) < 1/4,

for |z —zg| < C’a, provided § > 0 is small enough, independent of a, and a large enough.
Hence, for |z — 29| < Ca, we have

(9) Ra(2)(1 = P(2)) = Pi(2),

where
P=FKy1-K3— Ky ', PP=K (1-Kz— Ky

Denote by A" the Dirichlet realization of the Laplacian in |z| < r. In view of (6) the
characteristic values of Ky satisfy

11 (K2(2)) < Clz — 2ol (1 — A" 7Y2) < Oz — 2o|rj =M™,
and hence
(10) pi(P(z)) < C"g(1He)/e =1/

for |z — 20| < Ca. Hence, P(z)"t! is trace class, and by (9) and the appendix in [4] we
conclude that the resonances in |z — 29| < Ca are among the zeros of the function

he(z) = det(1 — P(2)"1).

By (10), for |z — 2| < Ca, we get

o) < T1(1 +my(Py)

j=1

(11) < ﬁ(l + Ca(n+1)(1+6)/€jf(n+1)/n) < eCa"(H‘E)/E.
j=1

Now, since hq(z9) = 1, by Jensen’s inequality and (11) we conclude

N(c/a) S C//an(lJrE)/E
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provided C” > 0 is small enough, which completes the proof of the theorem. O
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