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ABSTRACT. In this paper we study a nonlinear evolution inclusion of subdiffe-
rential type in Hilbert spaces. The perturbation term is Hausdorff continuous in
the state variable and has closed but not necessarily convex values. Our result
is a stochastic generalization of an existence theorem proved by Kravvaritis and
Papageorgiou in [6].

1. Introduction. In this paper we study a nonlinear random multivalued
evolution inclusion of the form

n {—j:(w,t) € o(w,x(w,t) + F(w,t,z(w,t)) }

2(w,0) = zo(w)

where F'(w,t,x) is a random multivalued perturbation term with closed but not neces-
sarily convex values.

Random differential inclusions have been studied by many authors (cf. Itoh [5],
Papageorgiou [10], Kravvaritis and Papageorgiou [7], Nowak [9] and their references).
Our result generalizes to the random case corresponding deterministic result proved by
Kravvaritis and Papageorgiou in [6].
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2. Mathematical preliminaries. Let (£2,%, 1) be a complete probability
space and H a separable Hilbert space. By Pr(H) we will denote the nonempty closed
subsets of H. A multifunction F': Q — Py(H) is said to be measurable if, for all z € H,

w—d(z,F(w)) =inf{|lz —z|, z € F(w)}

is measurable. By S%, we will denote the set of measurable selectors of F(-), that
belong in the Lebesgue-Bochner space L?(H), i.e.,

S2 ={feL*H) : flw) € Flw) p—ae}.

It is easy to check that this set is closed and it is nonempty if and only if inf{||z| :
r € F(w)} € L2

A function ¢ : Q x H — R = RU {+00} is a normal integrand if and only if
(w,z) — p(w, ) is measurable and, for all w € Q, z — ¢(w,x) is L.s.c. and proper. If,
in addition, ¢(w,-) is convex, then we say that ¢ is a convex normal integrand. Recall
that for a proper, convex function ¢ : H — R the subdifferential at x is defined by

Op(x) ={ye H : ¢(z) —¢(x) > (y,z—x) forall z€ H}.

We say that ¢(-) is of compact type, if for every A € R, the level set {x € H :
llz]|? + ¢(z) < A} is compact.
The generalized Hausdorff metric on P¢(H), is defined by

h(A, B) = max [sup d(a, B),sup d(b, A)} .
acA beB

We say that F': H — P¢(H) is Hausdorff continuous (h-continuous), if it is continuous
from H into the metric space (P¢(H),h).

3. The main result. Let 7" = [0,b] be a bounded, closed interval in Ry.
Consider the following initial value problem

(+0) {—oz:(t) € &p(x(t))Jrf(t)}
z(0) = xo

where f € L*(T,H) and 2y € D(d¢). A continuous function = : T — H is a strong
solution of (xx) if 2(0) = xg, x(-) is absolutely continuous on every compact subset of
(0,b) and

x(t) € D(0p) and i(t) € Op(x(t)) + f(t) a.e. on (0,b).



A random evolution inclusion of subdifferential type ... 119

It is known [3] that (x%) has a unique strong solution. By a random strong
solution of (x) we understand a stochastic process = :  x T'— H such that for every
w € Q, x(w,-) is a strong solution of

—i(w,t) € Op(w,z(w,t)) + f(w,1)
J)(w,()) = l‘o(w)
for some f(w,-) € Sl%'(w,-,x(w,-))'
We will make the following hypotheses:

H(p): ¢ : Qx H — Ris a convex normal integrand, which is of compact type in the
x-variable and the multifunction

D(w) = D(9p(w,-)) = {z € H : dp(w,z) # D}
has a bounded selector.
H(F): F : QxT x H— P¢(H) is a multifunction such that
(i) forall z € H, (w,t) — F(w,t,z) is measurable,

(i) for all (w,t) € A x T, v — F(w,t,x) is h-continuous,
(iii) |F(w,t,z)| =sup{|z| : z € F(w,t,x)} < a(t)+b(t)|z| a.e. for every w € £,
with a(-), b(-) € LA.

Hy: xp: Q) — H is measurable such that

sup{||zo(w)|,w € Q} < 0o and sup{p(w,zp(w)),w € N} < 0.

Theorem. If the hypotheses H(yp), H(F) and Hy hold, then (x) admits a
random strong solution.

Proof. Let z(-) be a bounded selector of D(-) and let u(w) € dp(w, z(w)). If
we set

Plw,z) = p(w,z) — p(w, 2(w)) = (u(w),z — 2(w)),

then (x) is equivalent to

—i(w,t) € 0p(w,x(w,t)) + F(w,t,x(w,t)) + u(w)
z(w,0) = zo(w).
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So there is no loss of generality in assuming that
min{p(w,z) : v € H} = p(w,2(w)) = 0.

Therefore
(2(w),0) € Grop(w,-) for all we Q.

First let us obtain an a priori bound for the solutions of (x). So let z(-,-) be a random

strong solution. By definition then there exists h(w,-) € 5% ) such that

(w"’x(wv')

—i(w,t) € Op(w,x(w,t)) + h(w,t)

From Lemma 3.1 (p. 64) of Brezis [3] we know that

l2(w, t) = 2(W)[? < [lzo(w) — 2(w)[|* + 2/(: 17w, s)[|.[|x(w, 5) = z(w)]lds.
Invoking Lemma A.5, p. 157, of [3], we get

|z(w,t) — z2(w)|| < [|zo(w) — 2(w)|| + /Ot |h(w, s)||ds forall weQ, teT.

Now, using the growth hypothesis H(F') (iii) we have

t
[2(w, ) — z(w)]| < [lzo(w) — 2(w)] +/0 [a(s) + b(s)[|x(w, )] ds,
and by Gronwall’s inequality we get
[z(w, )| < L-expllb(-)[1 =M foral weQ, teT,
where
L = sup{[lzo(w) — z()[ + lz(w)[| : weQ}+lal)]:-
Then consider the multifunction F': Q x T' x H — P;(H) defined by

F(w,t,z) if  Jz|| <M

F(w,t,x) = M
F (w,t, H—ﬁ) it |zl > M.

x

We see that

F(w,t,z) = F(w,t,ppm(x)),
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where pyps(+) is the M-radial retraction for which we know that it is continuous. Hence
(w,t,x) — F(w,t,z) is measurable. Furthermore note that

|[F(w,t,)] < a(t) + Mb(t) = 4(t), () € LX(T).

We set
B(y) = {h € LX(T,H) : ()] < 7(t) ac}.

Let now ¢ : Q x L*(T,H) — C(T, H) be the map that to each (w,h) € Q x L*(T, H)
assigns the unique solution of

(%)’ —i(t) € Op(w,z(t)) + h(t) a.e., z(0)=xo(w).

We claim that ¢ is a Caratheodory map. Fix h € L*(T, H). From Lemma 2.1 of [2] we
know that

q(w,h) = lim g)(w, h),
where g (w, h) is the unique solution of
EA(t) = Vor(w, 2x(t)) + h(t), zA(0) = zo(w)

with 1
ox(w, ) = inf ﬁHx—zHQ—i—(p(w,z) cz€eH|.

Since Vi, (w, x) is measurable in w (see Theorem 2.3 of [1]), ¢i(+, h) is also measurable
and so ¢(-,h) is measurable. From Lemma 3.1 of Brezis [3], we know that, for each
w € Q, q(w,-) is continuous from L?(T, H) into C(T, H). So ¢q(-,-) is a Caratheodory
map. Let

W = {q(w, h) = z : strong solution of (x), w € Q, h e B(v)}.

Then for any z(-) € W and t,t' € T, t < ', we have

|z (t') — x(t):H /t " i(s)ds
b 20 b 3
%/0 Hx[t,tq(s)wds] [/0 ua:~<s>u2ds] .

From the estimates provided by Theorem 3.6 of Brezis [3], we know that

b
[ JNECIRE
0

t b
g/t Ha’:(s)Hds:/O ([ Xz, (s)2(s)||ds

* < i zo@)]F < Il +sup {[plw.zo@)]} : we ) = A,




122 D. Kravvaritis, G. Pantelidis

So finally we have
1
l2(t)) — ()] < Mai(t' - 1),

which implies that W is equicontinuous.
Also again from Theorem 3.6 of [3] we know that

#OI + Sl 2(0)) = (h(D).3(0) ac.
o208 70(w) + [ (), 5))ds < ol () + a5l
sup{p(w, zo(w)) : we Q}+ [Yll2My = My

= p(w,z(t)) <My forall teT, weQ andall z(-) e W.

Recalling that ¢(w,-) is of compact type, we deduce that W (t) is compact for all
t € T. Invoking the Arzela-Ascoli theorem, we conclude that W is relatively compact
in C(T, H). As in the proof of Theorem 3.1 in [6] we can prove that W is closed, hence
compact in C(T, H). Tt then follows that W = convW is compact in C(T, H).

Now consider the multifunction R : Q x W — Py(L*(T, H)) defined by

R(w,9) = St

For each y € W, the multifunction w — R(w,y) is measurable. Indeed, since (w,t) —
F(w,t,z) is measurable and x — F'(w,t, z) is h-continuous F(-, -, -) is jointly measurable
([11, Theorem 3.3]). Then for every x € H,

(w,t,y) = d(z, F(w,1,9))
is measurable. Since the distance function is continuous in x, for each h € L?(T, H),

(w,t) = d(h(t), F(w,t,y(t)))

is measurable. From Fubini’s theorem we get that

w —>/ d w t Z/( )))dt = d(h’ Sj%‘(w,-,y(-)))

is measurable, which implies that w — R(w,y) is measurable.
Next consider the multifunction G : Q@ — P¢(C (W, L*(T, H))) defined by

Gw)={re C(W,LYT,H)) : r(y) € R(w,y) forall ye W}
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From Fryszkowski’s selection theorem [4], we know that, for all w € , G(w) # @. We
have

G(w) = {r e C(W,L*(T,H)) : d(r(y), R(w,y)) =0 forall ye W}

Since z — F'(w, t,x) is h-continuous, the multifunction y — R(w,y) is also h-continuous.
It then follows that y — d(r(y), R(w,y)) is continuous. Thus if {y,} is dense in W,
then -
Gw) = (Y {r € COV, LT 5 dlr(y). Rl ) = O}

n=1
Now, for fixed y € W, (w,r) — d(r(y), R(w,y)) is a Caratheodory map. So the mul-
tifunction w — {r € C(W,L%(T,H)) : d(r(y), R(w,y)) = 0} is measurable, which in
turn implies that G is measurable. By the selection theorem of Kuratowski and Ryll-
Nardzewski [8], there exists r : @ — C(W, L2(T, H)) measurable such that r(w) € G(w)
for all w € Q. Observe that, for every w € Q, q(w,r(w)(-)) : W — W. Apply-
ing Schauder’s fixed point theorem, we get € W such that ¢(w,r(w)(z)) = x. Set
Sw)={zxeW : g(w,r(w)(z)) = x}. Then there exists s : @ — C(T, H) measurable
such that s(w) € S(w) for all w € Q. Tt then follows that

w(w,t) = q(w,r(w)(s(w)))(?)

is the desired random solution of (x).
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