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ABSTRACT. The perturbation of critical values for continuous functionals is stud-
ied. An application to eigenvalue problems for variational inequalities is provided.

1. Introduction. Let X be a metric space and f : X — R be a continuous
function. Recently, in [4, 7, 8, 9], a critical point theory has been elaborated for such
a setting, which extends the classical case concerning smooth functionals on smooth
Finsler manifolds.

A possible development consists in the study of stability under perturbation.
More precisely, we can assume that ¢ € R is a critical value of f and ask whether any
g : X — R sufficiently close to f has a critical value near ¢. For functionals of class
C1 | such a problem has been already treated in [12, 13]. In our setting, the question
has been the object of [6, 10].
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In the first two sections, we recall the main aspects of the abstract theory of
[6, 10]. Let us mention that we are able to deal also with non-isolated critical values.
In addition, we study here in some detail the stability of a critical value originated by
a local minimum.

As it is shown in Theorem 3.1, the critical values, we are able to treat, are
stable if the perturbed functional ¢ is uniformly close to f. In section 4, we treat a
class of functionals in the Sobolev space H3(f2), for which I'-convergence is sufficient
to get the same result.

In the last section, we briefly outline a particular case which generalizes some

results of [6, 10], concerning eigenvalue problems for variational inequalities.

2. Trivial pairs and essential values. Throughout this section X will denote
a metric space endowed with the metric d and f : X — R a continuous function. If
beR:=RU{—00,+0c0}, let us set

fP={ueX: fu) <b}.

We also denote by B, (u) the open ball of centre v and radius r. More generally, if
Y C X, B, (Y) denotes the open r-neighbourhood of Y. For the topological notions

involved this section, the reader is referred to [14].

Definition 2.1. Leta,b € R with a < b. The pair (fb, fa) 18 said to be trivial,
if for every neighbourhood [/, o] of a and [, 8"] of b in R there exists a continuous
map H : % x [0,1] — f8" such that

H(z,0) ==z ve e f7,
H (7 < {1}) €
H (fa’ x [0, 1]) c .

Remark 2.2. If a < o in the above definition, we can suppose, without
loss of generality, that H(z,t) =z on f* x [0,1]. Actually, it is sufficient to substitute
H(z,t) with H (x,t9(z)), where 9 : f#" — [0,1] is a continuous function with ¥(z) = 0
for f(z) <« and ¥(z) =1 for f(z) > .

Theorem 2.3. Let a,c,d,b € R with a < ¢ < d < b. Let us assume that the
pairs (fb,fc) and (fd, fa) are trivial.
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Then the pair (fb, fa) is trivial.

Proof. Let [o/,a”] be a neighbourhood of a and [#, 5”] a neighbourhood of b.
Without loss of generality, we can assume o’ < ¢ and 3/ > d. Moreover, let ¢ < v < d.
There exists a continuous map H; : f7 x [0,1] — fP" such that Hi(z,0) =z V& e
7, Hy (f7 % {1}) € 7, Ha (£ x[0,1]) € f7 and such that Hy(z,t) = & on
o x [0,1]. Moreover there exists a continuous map Hsy : f? x [0,1] — 1% such that
Ho(x,0) = o Vo € 7, Ho (Y x {1}) C £, Ho (fo" x [0, 1]) C . If we define
H: P x[0,1] — %" by

IN

Hi(z, 2t) 0<t<i
H(z,t) = 2
Ho (Hi(z,1),2¢ —1) $<t<1
it turns out that H is a continuous map with the required properties. Therefore the

assertion follows. O

Definition 2.4. A real number c is said to be an essential value of f, if for
every € > 0 there exist a,b €|c — e,c + e[ with a < b such that the pair (fb, fa) s not

trivial.

Remark 2.5. The set of the essential values of f is closed in R.

Theorem 2.6. Let a,b € R with a < b. Let us assume that f has no essential
value in ]a,b[.

Then the pair (fb, fa) 1$ trivial.

Proof. Let [o/,”] be a neighbourhood of a, [#, 3”] be a neighbourhood of b
and let a' €]a, o[ and V' €]F',b] with o’ < ¥’ . For every ¢ € [a/,V] there exists £ > 0
such that for every @,b €]c— ¢, c+ e[ with @ < b the pair (fg, fa) is trivial. Since [d/, V']

is compact, there exist @’ <c¢; <--- < ¢, <V andg; >0 fori=1,---,k, such that
k
[a',b'] - U]Cl — €&, C + Ei[
i=1

and such that for every @,b €]c; — &;,¢; + &;[ with @ < b the pair (fg, fa) is trivial.
Arguing by induction on k and taking into account Theorem 2.3, we deduce that the
pair ( 1Y, fa/) is trivial. Then there exists a continuous map H : f7 x [0,1] — e
such that

H(z,0) ==z va e f7,
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H (17 x 1)) <
H (fa’ x [0, 1]) c o

It follows that the pair (f°, f@) is trivial. O

3. Properties of essential values. Let X denote again a metric space and

f:+ X — R a continuous function.

Theorem 3.1. Let c € R be an essential value of f.
Then for every € > 0 there exists 6 > 0 such that every continuous function

g: X — R with
sup{|g(z) — f(z)]: x € X} <9

admits an essential value in]c —e,c+ €.

Proof. By contradiction, assume there exist € > 0 and a sequence of continuous
functions g : X — R such that

sup {|gx(7) — f(2)|: v € X} < %

and such that g has no essential value in Jc — e, ¢+ ¢].

Let a,b €]c—¢, ct¢[ with a < b. Let us show that the pair (fb, fa) is trivial. Let
[/, "] be a neighbourhood of a and [#', "] a neighbourhood of b. Since the function
gk has no essential value in ]a, b[, the pair (gz, g,‘;) is trivial, by Theorem 2.6. Moreover,
if k is sufficiently large, we have o/ +1/k <a <o’ —1/kand f'+1/k <b< 3" —1/k.

/4 1 n_ 1
Then there exists a continuous map Hj, : gf TE « [0,1] — gf k such that

g1
Hy(z,0) =z Vx€g£+k,

/o 1 m_ 1
(0 <)) <ol

1"

-1
k

/1
M, (g,i“*’“ % [0, 11) o

1

1

==

/ ! l " / ! l —l s
Since f& C g;: T - g;: C f*" and 7 C 9y T - gf k C fP" it follows that the

pair (f°, f@) is trivial. Therefore, c is not an essential value of f: a contradiction. [

Now, let us recall a notion from [4, 7, 9].
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Definition 3.2. For everyu € X let us denote by |df|(u) the supremum of the
o’s in [0, +oo[ such that there exist 6 > 0 and a continuous map H : Bs (u) x [0,] — X
with

d(H(v,t),v) < t,
f(H(v,1)) < fv) —at.

The extended real number |df|(u) is called the weak slope of f at u.

It is readily seen that the function |df|: X — [0, +00] is lower semicontinuous.

Definition 3.3.  An element uw € X is said to be a critical point of f, if

|df|(u) = 0. A real number ¢ is said to be a critical value of f, if there exists a critical

point u € X of f such that f(u) = c. Otherwise c is said to be a regular value of f.

Definition 3.4. Let ¢ be a real number. The function f is said to satisfy the
Palais - Smale condition at level ¢ ((PS). for short), if every sequence (up) in X with
|df|(up) — 0 and f(up) — ¢ admits a subsequence (up,) converging in X to some v

(which is a critical point of f, by the lower semicontinuity of |df]).

For every c € R let us set
K.={ueX: f(u)=c¢, |df|(u)=0}.

Theorem 3.5 (Deformation Theorem). Let c € R. Let us assume that X is
complete and that f satisfies the Palais-Smale condition at level c .

Then, for every € > 0, O neighbourhood of K. (if K. = @, we allow O = Q)
and A > 0, there exist € > 0 and a continuous map n: X x [0,1] — X such that:

(a) d(n(u,t),u) < At;

0) f(n(u,t)) < f(u);

(©) f(u) ¢le—E c+El = nlut) = u;
(d) n(f<=\0,1) C fo=.

Proof. See [4, Theorem (2.14)]. O

Theorem 3.6 (Noncritical Interval Theorem). Leta € R and b € RU {+o0}
(a < b). Let us assume that X is complete, that f has no critical point u with a <
f(u) < b and that f satisfies (PS). for every c € [a,b] .

Then there exists a continuous map n: X x [0,1] — X such that
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(@) n(u,0) = u;

() fln(u,t)) < f(u);

(c) flu) <a = n(u,t) =u;
(d) fu) <b = f(n(u,1)) <a

Proof. See [4, Theorem (2.15)]. O

Theorem 3.7. Let ¢ be an essential value of f. Let us assume that X 1is
complete and that (PS). holds.

Then c is a critical value of f .

Proof. By contradiction, let us assume that c¢ is not a critical value of f. Since

the function |df| is lower semicontinuous and (PS), holds, there exists € > 0 such that
inf {|df|(z): z€ X, c—e< f(z) <c+e} > 0.

In particular, f has no critical value in Jc¢ — €, ¢+ ¢[ and (PS)4 holds whenever ¢ — & <
d <c+e. Let a,b €]c —e,¢+ ¢] with a < b. By the Noncritical Interval Theorem
there exists a continuous map 7 : X x [0,1] — X such that

n(z,0) = z,

fn(z,t)) < f(),
f@) < b= f(n(z1) < a,
flx) < a = n(zt) = .

In particular the pair ( fo, fa) is trivial. Therefore, ¢ is not an essential value of f: a

contradiction. O

Example 3.8. Let f:R? — R be defined by
_ oz 2
flry) =€ —y~.

Then 0 is an essential value of f, but not a critical value of f. On the other hand,
(PS)o is not satisfied for f.

Let us show that the values arising from usual min—max procedures are all
essential.



Perturbations of critical values in nonsmooth critical point theory 433

Theorem 3.9. Let ' be a non-empty family of closed non-empty subsets of X
and let d € RU{—o0}. Let us assume that for every C € I' and for every deformation
n: X x[0,1] = X with n(x,t) =z on f%x [0,1], we have n(C x {1}) € T'. Let us set

¢ = inf su T
RESAY

and let us suppose that d < ¢ < +00.

Then c is an essential value of f .

Proof. By contradiction, let us assume that ¢ is not an essential value of f.
Let d < a < c and b > ¢ be such that the pair (fb, fa) is trivial. Let

d<d <a<d <ec<y<p<b.
Then there exists a continuous map H : f x [0,1] — X such that
H(z,0) ==z Vo e [P,
H(F7 > {1}) € 1,
H(F x [0,1]) €
H(z,t) == V(z,t) e f4x[0,1].
Let ¥ : X — [0,1] be a continuous function such that J(x) = 1 for f(x) < v and
Y(z) =0 for f(xz) > 3. Let us define n: X x [0,1] — X by
H(z,9(x)t) if f(z) <
n(z,t) = ' .
. if f(z) > 8

It turns out that 1 is a deformation with n(x,t) = x on f¢ x [0,1]. Let C € T be
such that C' C f¥. Then n(C x {1}) € I" and n(C x {1}) C f*"; this is absurd, as
o <e. O

Corollary 3.10. Let (D,S) be a pair of compact sets, let ¢ : S — X be a

continuous map and let
® = {peC(D;X): pg=1}.
Let us assume that ® # O and let us set

= inf .
¢ = inf max /()
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If ¢ > mwa()é) f(x), then c is an essential value of f .
S

Proof. Let us set
I' = {p(D): p € P},

d = .
nax f(z)

Then the assertion follows from the previous theorem. O
Corollary 3.11. Assume that X is non-empty and f is bounded from below.
Then infx f is an essential value of f .
Proof. Let us set
' ={{z}: z€ X},
and d = —oco. Then the assertion follows from Theorem 3.9. O

Now we want to study in more detail the case of a local minimum.
Example 3.12. Let X =R and let f : R — R be defined by

(x+1)33 ifz< -1
flx)=40 if —1<zx<1
(x—1)3 ifz>1
Then 0 is a local minimum of f, but 0 = f(0) is not an essential value of f. In fact

fe(z) = f(z) + earctanx, e>0

has no critical value, even if f. satisfies (PS), for any ¢ € R and (f. — f) is uniformly
small. From Theorems 3.1 and 3.7 it follows that 0 is not an essential value of f.

Now we study the situation for a strict local minimum .

Definition 3.13. We say that v € X is a strict local minimum for f, if there
ezists a neighbourhood U of u such that

Voe U\ {u}: f(v) > f(u).

Example 3.14. Let X be the Hilbert space [?. For any integer j > 1, let
@; : R — R be the continuous function defined by

—-1-—3s if s<—1
©i(s) = %s(s—i-l) if-1<s<0

s ifs>0
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It is readily seen that

1
(,Oj(S) > _4_j>
lpj(s)] < sl

Let ®; : R — R be the primitive of ¢; such that ®;(0) = 0 and let f : X — R be
defined by

flu) = i@j (u(j)) .
j=1

Then f is of class C'! and has a strict local minimum at the origin. Define f; : X — R
by
1
fr(u) = f(u) + 7 arctan (u(h)) .

Then f;, is of class C'!' and uniformly close to f. Moreover it is

1 1

+e—>
R4 (u®)® ~

Vue X : fi(u)en = pn (u(h)) ﬁ .
It follows that f, satisfies (PS). for any ¢ € R and has no critical value. From Theo-
rems 3.1 and 3.7 we deduce again that 0 = f(0) is not an essential value of f. Observe
that f does not satisfy (P.S)o.

In the next theorem, we give a positive result, when the minimum has a different
property. In particular, the cases where u is a strict local minimum and X is finite

dimensional or (PS), holds for f are covered.

Theorem 3.15. Let u € X . Assume there exists a neighbourhood U of u
such that
VoeU: f(v) = f(u),

inf{f(v): vedU} > f(u)
(the agree that inf @ = +00).

Then f(u) is an essential value of f .

Proof. Let c= f(u), 0 < <inf{f(v): v€ U} — f(u) and let € €]0,0[. Let
a€lc—e,c—5[and b €]c+§, c+el. We claim that (f°, f¢) is not trivial. By contradic-
tion, let H : f¢75 x [0,1] — f¢ be a deformation such that H (f‘”'% X {1}) C fes.
We have ‘H (chr% x [0, 1]) NOU = O, hence H ({u} x [0,1]) C U. This is absurd, as
f(H(u,1)) <c—5. O
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Corollary 3.16.  Let X be locally compact and let uw € X be a strict local
minimum of f .

Then f(u) is an essential value of f .

Proof. It follows from the previous theorem. O

Corollary 3.17.  Let u be a strict local minimum of f. Assume that X is
complete and that the Palais-Smale condition is satisfied at level f(u) .

Then f(u) is an essential value of f .

Proof. Let » > 0 be such that

Yo € Bar (u) \ {u} : f(v) > f(u).

By Theorem 3.15 it is sufficient to show that

inf{f(v): v€ IB,; (v)} > f(u).

Let us set ¢ = f(u). By contradiction, let (vj) be a sequence in 0B, (u) with f(vp,) —
f(u). By the Deformation Theorem, there exist € > 0 and a deformationn : X x [0,1] —
X such that

d(n(u,t),u) <rt,

1 ((f7T5\ By (Ko)) x {1}) € f°.

For h sufficiently large, it follows n(vp,1) € Ba, (u) and f(n(vp, 1)) < ¢ —e: a contra-
diction. O

4. Perturbations with variable domain.

Definition 4.1. Let X be a topological space and, for any h € N := NU{+o0},
let fr,: X — RU {400} be a function. According to [1, 5], we write that

foo = T(X7) lim fi
if the following facts hold:
(a) if (up) is a sequence in X convergent to u, we have

foo(u) < liminf fi,(up) ;
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(b) for every u € X there exists a sequence (up) in X convergent to u such that

foolu) = li}IZn fr(up) .

Definition 4.2. Let X be a normed space and, for any h € N, let K,
be a closed convex subset of X . According to [11], we say that the sequence (Kj) is

convergent to K, in the sense of Mosco, if the following facts hold:

(a) if hj — +o00, u; € Ky, and the sequence (uj) is weakly convergent to u in X,
then u € Ky ;

(b) for every u € Ky there exists a sequence (up) strongly convergent to u in X

with up, € Ky, .

Now let € be a bounded open subset of R” with n > 3. For every h € N let
fn: HY(Q) — RU {+oc} be a functional and let us denote by

D(fn) ={u e Hé(Q) s fr(u) < +oo}

the effective domain of f;. In the following || - ||, will denote the norm in LP(£2) and

| - || the norm in H}(Q). Let us assume that:

(i) for every h € N the functional frp(f,) 1s continuous with respect to the strong
topology of Hi(Q);

(i) foo = D(w — H(Q)7)limy, f,, where w — HJ(£2) denotes the space Hi ()
endowed with the weak topology;

(iii) if (up) and (vy) are weakly convergent to w in Hg(Q) with wup, v, € D(foo)
and

limhsup(llvhH — [lusl]) <0,

then
hmhsuP (foo(vn) = foo(un)) < 0;

(iv) if (up) is weakly convergent to u in H} () and limy, f,(up) = fool(u) < +00,
then wy, is strongly convergent to u in H¢(9);

(v) if (up) is strongly convergent to u in H} () with uj, € D(f), then fy(up) —
Joo (u) ;
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(vi) if we set Ky, := D(fy,) for every h € N, K}, is a closed convex subset of H{ ()
with 0 € Ky, ;

(vii) we have

lim  foo(u) =400
[[uf—o0

and for every R > 0 and b € R there exist h € N and Ry, Ry > 0 with
R < Ry < Ry such that

[( U f;?) A B, (0)] C B, (0) .

h>h
First of all, let us investigate the stability of the assumptions (i), ..., (vii).

Proposition 4.3. Let us assume that (fy,) satisfies the hypotheses (i), . .., (vii)
and let (gr) be a sequence of continuous functions from Hg(Q) to R such that g, — 0
uniformly on bounded subsets of Hi(Q) .

Then (frn + gn) satisfies the hypotheses (i), ..., (vii) .

Proof. It is easy to see that the hypotheses (i), ..., (vi) hold for (f + gn) -

Let us prove that the hypothesis (vii) holds for (f,+gx). Let R > 0and b € R.
Let h, Ry, Ry be related to f;, R and (b+ 1) as in the hypothesis (vii). Let h > h be
such that |gp| < 1 on B, (0) for h > h. Then

|:< U (fh + gh)b> N BR2 (0)] - BRI (0)

h>h

and (vii) follows. O

For p > 0, let us set

S :{UGH(%(Q):/QUZC&:/)Q}.

In the following, the set K;, NS, will be endowed with the H&—metric.

For every h € N let us set fj, := fh\Kth,,’ Evidently f, : K N S, — R is
continuous. Our aim is to obtain a result like Theorem 3.1 in this setting. Observe,
however, that fj, is not uniformly close to fso. Actually, even the domain of f), is
variable.

Let us recall a definition from [3].
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Definition 4.4. Let C' be a convex subset of a Banach space X, let M be a
hypersurface in X of class C1, let u € CNM and let v(u) € X' be a unit normal vector
to M at uw. The sets C' and M are said to be tangent at u, if we have either

(v(u),v —u) <0 YveC
or
(v(u),v —uy >0 Yv e C,

where (-,+) is the pairing between X' and X .

The sets C and M are said to be tangent, if they are tangent at some point of
CnNnM.

Now we can state the main result of this section.

Theorem 4.5. Let ¢ € R be an essential value of foo. Let us assume that
Ky and S, are not tangent at any point of fgo

Then for every e > 0 there exists h € N such that for every h > h the functional
fn has an essential value in le—¢e,c+el.

The proof of this theorem will be given at the end of this section, after some
auxiliary lemmas.

Lemma 4.6. For every u € K, there exists a sequence (uyp,) strongly conver-
gent to u in H () with uy, € Ky, .

Proof. From the definition of I'-convergence, it follows that there exists a
sequence (uy) weakly convergent to uw in H(Q) with f,(up) convergent to foo(u).
From assumption (iv) we deduce that (up) is strongly convergent to u and the assertion
follows. O

Let us set
D= { (hyu) e Nx S,: u € Kj, and K;, and S, are not tangent at u}

In the following, D will be endowed with the topology induced by N x L?(Q).

Theorem 4.7. For every € > 0 there exists a continuous map
n:D — HYS)
such that for every (h,u) € D we have

n(h7 u) € Kh )
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/u(n(h,u) —u)dzr > 0,
Q

[n(h,u) —ullz2 < €&,
[Dn(h,u)ll2 < [|Dullz + &,

In(h, W)l < Jlull + &.

Proof. It is sufficient to prove the assertion without the last inequality.
For every (h,u) € D let us denote by X(h,u) the set of ¢’s in |0, +00[ such that
there exists u™ € K}, with

/Qu(u+ —wde > o, |ut —uls < &, |[Dut|ls < |Dulls + £.

Because of the definition of D, for every (h,u) € D we can find u™ € K}, with [, u(u™—
u)dz > 0. By substituting vt with (1—t)u+tu™ for some ¢ €]0, 1[, we can also suppose
that |[ut — ulls < € and ||Du™||2 < ||Dull2 + €. Therefore X(h,u) is a non-empty
interval in R.

Moreover, let us consider o € X(oo,u) and let us choose ut € Ky, according
to the definition of X(co,u). Let (u;) be a sequence converging to u™ in H{ () with
(u;f) € Ky, . Then it is readily seen that o € X(h,v) for every (h,v) sufficiently close to
(c0,u) in D.

Now it is easy to see that, for every (h,u) € D and for every o € X(h,u), we
have o € ¥(k,v) whenever (k,v) is sufficiently close to (h,u) in D . Therefore there
exists a continuous function o : D —]0, +00[ such that o(h,u) € X(h,u).

For every (h,u) € D let us denote by F(h,u) the set of u™’s in K} such that

[ e —wdz > o), Jut = ulz < & [Dutla < [Dulls + &.
Q

Then F(h,u) is a non-empty closed convex subset of H} ().

Let (oo,u) € D, ut € F(oo,u) and ¢ > 0. Let 4t € K be related to
o(oo,u), as in the definition of ¥ (oo, ). By substituting 4™ with (1 — t)u™ + ta™ for
some ¢ €]0, 1[, we can suppose that ||a* —uT|| < £. Let (4; ) be a sequence converging
to @t in H}(Q) with 4 € K;. Then it is readily seen that |4} — ut| < e and
;- € F(h,v) for every (h,v) sufficiently close to (co,u) in D.
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Now it is easy to see that the multifunction {(h,u) — F(h,u)} is lower semi-
continuous on D. By Michael Selection Theorem [2, Theorem 1.11.1] there exists a
continuous map 7 : D — HE(Q) such that n(h,u) € F(h,u) and the assertion fol-

lows. O

Lemma 4.8. Letb € R and € > 0. Let us assume that Ky, and S, are not
tangent at any point of fz’jé.
Then there exists a function n: D — H}(2) as in Theorem 4.7 such that

[n(co, w)|| < ljul} + &,

foo(v) < foolu) + €

whenever u € f2 t €(0,1] and

[e.o]

(1 —t)u + tn(oo, u)
(1 = t)u+ tn(oco, u)ll2 -

v=2p

Proof. By contradiction, let us assume that there exist u; € ~£j’ € tj €[0,1]

and a sequence of continuous functions n; : D — H}(£2) such that

1
15 (00, uz) — ujll2 < 7

1
s (o0, up)ll < Hlull + 5

and

foo(vj) > fw(uj) +é
with
v =p (A —tj)u; +tjm;(00,u5)
[(1 = tj)u; + tjn;(00, us)|l2

Because of (vii), up to a subsequence, (u;) is weakly convergent in H}(Q2) to some

u € Koo N'S,. Hence we have that n;(co,u;) — u in H3(Q). It follows that

(1 —t;)u; +tjnj(o0,ui)] — u in HE(Q), hence v; — u in H}(). Moreover, from
I|(1 —tj)u; +tjn;(co,uj)||2 > p we deduce that v; € Koo NS, . Since

1im§up(\|vj\| —[lu;]) <0,
j
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from assumption (iii) we deduce that

limsup ( foo(v7) = foo(uy)) < 0.
j
Therefore, for j sufficiently large, foo(’uj) > foo (uj) + € implies a contradiction and the

assertion follows. O

For every h € N let us denote by 7, : H}(2) — K}, the orthogonal projection
in H} () on the closed convex set Ky, .

Lemma 4.9. Letbe R, é >0 and R > 0 with f C Bg(0). Assume that
Ky and S, are not tangent at any point of fé’ja Let n: D — H(Q) be a map as in
the previous lemma. Moreover, if u € fé’ja and mp(n(oo,u)) # 0, let
7Th(77(007 u))
Pyp(u) = p :
[[7h (n(00, u))|2

Then there exists h € N such that the following facts hold:

(a) for every h > h the sets Ky and S, are not tangent at any point of f,§’+é N
BR-I—é (0) ;
(b) for every h,k € N with h,k > h and u € f,ngé N Brie (0) we have

7 (n(k, w)lla > p,

(k)
h ("nm(n(k,u))ng

(c) for every h>h, u € fé’o and t € [0,1] we have

) < frlu) + &;

[Pr(u)ll < flull + &,

11 = #)n(00, Poo(u)) + tmoo(n(h, Pu(u))ll2 > p,

3 (1 = t)n(00, Po(u)) + tmoo(n(h, Py(u))) ; .
a <”H<1 ~ (00, Poo(w)) + tro (R, Ph<u>>>u2) < Joolu) + 2.

Proof. Let us prove property (a). By contradiction, let us assume that there

+

exist hy — 400 and uy € fgké N Bprye (0) such that Kp, and S, are tangent at uy.

Since 0 € K, , we have

/uk(v—uk)daz <0 Vv € Ky, .
Q
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Up to a subsequence, (uy) is weakly convergent in HJ(€) to some u € fir¢. Let

v € Kuo. Let (vy,) be weakly convergent to v in Hg(Q) with f,(vy) — foo(v). It follows
that, eventually, v, € K; . Therefore, for k sufficiently large, we have

/uk(vhk—uk) dx <0,
Q

which implies
/u(v—u)da: <0:
Q

a contradiction, because K4, and S, are not tangent at u.
Let us prove property (b). First of all, by contradiction, let us assume that
there exist h; — 400, kj — 400 and u; € f,i’;ré N Bryz (0) such that

|, (ks )|, < o

Up to a subsequence, (u;) is weakly convergent in H}(Q) to some u € fé’j €. Con-
sequently, (n(kj,u;)) is strongly convergent in H{ () to n(oco,u). Let (vy) be weakly
convergent to n(oco,u) in H}(Q) with fi,(vs) — feo(n(co,u)) . From assumption (iv) we
deduce that (v,) is strongly convergent to n(oco,u) in Hg(Q2). For j sufficiently large,
we have that
[ mny () = mkgow)| < low, = mlksy )l

Therefore 7, (n(kj, u;)) — n(oco,u) in H§(), which implies [|n(co,u)||2 < p. This is
absurd, as [ u(n(oo,u) —u)dr > 0.

Now, by contradiction, let us assume that there exist h; — +o0, k; — +o00 and
uj € i N BRrye (0) such that

Jg < Th; (77(/% u]))
Pa \ P, (k)2

) Z fkj(u]') + .

Up to a subsequence, (u;) is weakly convergent in H}(£2) to some u € fé’j €. As in the

previous argument, it follows 7, (n(k;, u;)) — n(oco,u) in Hg (). Since
5T (n(kj,uj))
[l (n(Kj 5 5))l2
from assumption (v) we deduce that

) (oo w)
fhj<p| H2> Fu (o ).

|7, (1(K;5 uj)) [(n(00, u))]l2

EKh].ﬁSp,
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Combining this fact with fo(u) < liminf; fi;(u;), by Lemma 4.8 we get a contradic-
tion.

Let us prove property (c¢). Since [|n(oco,u)|| < |Jul|+£€ and 0 € K}, , it is clear that
| Pp(uw)|| < |Jul| + €. Now, by contradiction, let us assume that there exist hy — +00,
uy, € f4 and t), € [0,1] such that

(1 = tr)n(00, Poo(tur)) + thToo(n(hi, Pry, (ur)))ll2 < p.

Up to a subsequence, (uy) is weakly convergent in Hg () to some u € f% . As in the
proof of property (b), we have that m,, (n(co,ur)) — n(oo,u) in H} (). It follows
Py, (u) — Poo(uw) and n(h, P, (u)) — n(00, Pso(u)) in H}(€2). As in the proof of (b),
we get a contradiction.

Finally, by contradiction, let us assume that there exist hy — 400, up € fé’o
and tg € [0, 1] such that

7 <p (1 —tg)n(oo, Poo(ug)) + trmoo(n(hy, Pry (ug)))
AN = ti)n(00, Pao (ur)) + temmoo ((hi, Pay (ur))l2

) > foo(uk) + 2¢€.

Up to a subsequence, (uy) is weakly convergent in H}(£2) to some u € fé’o . Asin the pre-
vious argument, we have (1—15)n(00, Poo(ur)) + teToo (n(hk, Pry (uk))) — 1(00, Poo (u))

in H}(Q). Therefore by assumption (v) and Lemma 4.8 we get a contradiction. [

Lemma 4.10. Let R>0,beR and ¢ > 0. Let us assume that % C By (0)
and that K and S, are not tangent at any point of Z’jé.

Then there exists h € N and, for every h > h, two continuous maps
Ph:fgoHKhﬂSpﬁBR+é(0) s Qn : ~£+éﬂBR+é(O)—>KOOﬂSp

such that fr,(Py(u)) < foo(w) + €, foo(Qn(v)) < fr(v) + & for every u € fo, v €
~£+é NBpryz (0) and such that Qy o Py = fo — f242 is homotopic to the inclusion map

fgo N :2:—25 by a homotopy H : fgo X [07 1] — :23'% such that

V(u,t) € f& % [0,1] : Foo(H(u, 1)) < foolu) + 22.

Proof. Let n : D — H}(2) be as in Lemma 4.8 and let h € N be as in
Lemma 4.9. According to Lemma 4.9, for every h € N with h > h let us set

e u) — ™ (1(00, )
Vel Balw) = e R
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oo (n(h, v))

WESTNBR(0) s Q) = PG

By Lemma 4.9 it is readily seen that P, and @)}, are well defined, continuous and satisfy
Fu(Pr(u)) < foo(u) +€, foo(Qn(v)) < fr(v) +¢ for every u € f&, v € f** NBrye (0).
Now let us define Ho : f2 x [0,1] — f2+ by
(1 —t)u+ tn(oo, u)
Ho(u,t) = .
N [ PETE

Then Ho(u,0) = u and, by Lemma 4.8, we have foo(Ho(u,t)) < foo(u) +£. Essentially
in the same way, we can define H; : fé’o x [0,1] — fé’j’ 2 by
(1 —t)Poo(u) + tn(o0, Poo(u))
Hi(u,t) = p .
(8 = P =0 Ptu) + tnloo. P ()]

Thus, H1(u,0) = Ho(u, 1) and foo(H1(u,t)) < foo(u) + 22
Finally, let us define Hy : f% x [0,1] — fo72 by

(L —£)n(00, Po (u)) + tmoo(n(h, Pp(u)))

(1 = t)n(00, Poo(u)) + tmeo(n(h, Pr(u)))ll2

Ho(u,t) = pH
By Lemma 4.9, Hs is well defined, continuous, with fao(Ha(u, 1)) < foo(u) 4+ 2¢ . More-
U

over, Ha(u,0) = Hi(u,1) and Ha(u, 1) = Qn(Pr(u)). The proof is complete.
Let € > 0 be such that K, and S, are not

Proof of Theorem 4.5.
fCJrg. Infact, by contradiction, let us assume that there exists

tangent at any point of f$J
41
uj € fso such that K., and S, are tangent at u; . Up to a subsequence, (u;) is weakly

convergent in H} () to some u € f¢ . We have that

/uj(v—uj)da: <0 Vv € Koo
Q

and, as j — 400, we obtain
/u(v—u)daz <0 Vo e Ky :
Q

a contradiction, because K4, and S, are not tangent at u.
. Let h € N ,

Because of (vii), there exists R > 0 such that f<¢ C By (0)

R, Ry > 0 with R < Ry < Rs be such that
[( U fﬁ*g) NBr, <0>] C Br, (0) .

h>h
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Now, by contradiction, let us assume there exist ¢ > 0 and hy — +o0 such that fhk has
no essential value in |¢ — ¢, ¢+ ¢[. Without loss of generality, let us assume that € < €.

Let a,b €]c—¢e,c+¢[ with a < b. Let us prove that the pair (fgo, fgo) is trivial.
Let [/, @] be a neighbourhood of a and [, 3] be a neighbourhood of b with 3" < c¢+¢&.
Since fhk has no essential value in ]a, b[, the pair (f}zk, f;fk) is trivial by Theorem 2.6.
Let a/,a”,t/,b" € R be such that o <d <a<d <o and <V <b< ' <pg"
For every k € N there exists a continuous map Ky, : f}{; x [0,1] — f}{: such that

/Ck(U,O) =u,
Ki (71, < {1}) < Fir,
i (Fi < 0,1]) € 7y
Let € €]0,€[ be such that o/ +é < d/,a" +& <", f/+& <V, V" +& < " and such
that R1 +¢é < Rs.

Now let h, P, and Qj, be related to Ry, (b” —€) and ¢ as in Lemma 4.10 and
let k € N be such that hy, > max{h,h}. Let us define H : f& x [0,1] — f2" by

H(u,t) = Qp,, (Ki(Pry,(u),t)) -

Of course H (foﬁol X {1}) C f¢" and H (fgo’ x [0, 1]) C f&¢'. By Lemma 4.10 H(-,0) :
( fg, fgo’) — ( ff!, fgg”) is homotopic to the inclusion map. Therefore the pair
(f%, %) is trivial

We conclude that ¢ is not an essential value of foo : a contradiction. O

5. A more specific case. Throughout this section, 2 will denote a bounded
open subset of R" with n > 3. Let (K), h € N, be a family of closed convex subsets of
H(Q) with 0 € Kj,. We assume that (K},) is convergent to K, in the sense of Mosco.

Let P, : QxR — R, h € N, be Carathéodory functions such that

(H1) for every £ > 0 there exists a. € L'(2) such that
2n
| Pp(z,8)| < as(x) + ¢|s|»—2

fora.e. z€Qandall seR and h € N;
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(H2) for a.e. z € ) we have
Py (z,s) = li}rln Py(x, s)

uniformly on compact subsets of R;

(H3) we have Py (x,s) > 0 for a.e. x € Q and all s € R.

Finally, let (i) be a sequence strongly convergent to fis, = 0 in H1(Q).
Now define f; : H}(2) - RU {+o00}, h € N, by

Frlu) = {%fg |Dul?dx + [ Pu(z,u)dz — {pp,u) Vu €Ky

400 elsewhere

Lemma 5.1. The sequence (fp,) satisfies all the conditions (i), ..., (vii) of the

previous section.

Proof. Let (uj) be a sequence weakly convergent to u in Hi(Q). Up to a

subsequence, (uy) is convergent to u a.e. in Q. For every € > 0, we have
Pa(w,un) + elun 77 > —ac(a).
From (H2) and Fatou’s Lemma it follows that
/ Py (z,u)dr + 6/ |u\% dx < liminf/ Py (x,up) dx + f-:limsup/ |uh|% dx ,
Q Q h Q h Q

hence
2n

/ Pyo(z,u)dx < liminf/ Py(x,up) dz + esup |jug|| % -
Q h Q h n—2
By the arbitrariness of €, we have
/Poo(m,u) dx gliminf/ Pp(x,up) dz.
Q h Q
In a similar way, we can prove that
/Poo(x,u) dx > limsup/ Py(z,up) dx,
Q h Q

so that
/Poo(x,u) dx = lim/ Py(z,up) dx.
Q hJa
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Therefore we have
tim | [ 1Pu(o) = Pl do = ()] = 0
Q

uniformly on bounded subsets of H}(12).

Let us consider

+00 elsewhere '

It is easy to see that (f),) satisfies (i), ..., (vii) . From Proposition 4.3 we conclude that
(fn) satisfies (i),..., (vii). O

As in the previous section, let us set

for p > 0: S, = {ue H}Q): [qu*de = p*},

for any h € N: fn= fththp .

Theorem 5.2. Let ¢ € R be an essential value of foo. Let us assume that
K and S, are not tangent at any point of fgo
Then for every e > 0 there exists h € N such that for every h > h the functional

fn has an essential value in |c — ¢, ¢ + €|.
Proof. The assertion follows from Lemma 5.1 and Theorem 4.5. O

Finally, let us mention that, in more particular situations, it is possible to give
sufficient conditions for nontangency and for the existence of essential values. Moreover,
it is possible to show that for any essential value ¢ of f}, there exists (A, u) € R x H{ ()
such that

ueKyn5Ss,
Jo [DuD(w —u) 4+ pp(x,u)(v —u)] dr — (pp,v —u) > A [qu(v —u)dr Vv ek, ,
fu(u) = ¢

op,

where py(z,s) = F2(x,s). For all these aspects, we refer the reader to [6, 10].
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