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ABSTRACT. The existence of a nontrivial critical point is proved for a functional

containing an area-type term. Techniques of nonsmooth critical point theory are
applied.

1. Introduction. Let 2 be a bounded open subset of R" (n > 3) and ¢ :
) x R — R a Carathéodory function with g(x,0) = 0. A classical result of Ambrosetti
and Rabinowitz [1, 12, 13] says that the semilinear problem

{ —Au=g(z,u) in
u=20 on 0f)
admits a nontrivial solution wu, provided that the following conditions are satisfied:
(C1) there exist a € LnQ_L(Q), beRandpe }2, %[ such that
l9(x,5)| < a(x) +b|sP~";
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452 Marco Marzocchi

(C2) there exist ¢ > 2 and R > 0 such that
|s| > R =0 < qG(z,s) < sg(x,s),

where G(z, s) :/ g(x,t)dt;
0

(C3) it is
5s—0 S

uniformly with respect to x.

Such a nontrivial solution u is found as a mountain pass point of the functional f :

H(Q) — R defined by

flu) = %/Q|Du\2 dx—/QG(x,u) dx.

Our aim is to get a similar result for a class of functionals which contains, as a

model example, the functional

fu) :/Q|Du\ dx—/QG(x,u) dx.

The correct expression of f, which requires a relaxation procedure, will be given
in section 4. Here we want to observe that the natural adaptation of condition (C1)
would be

l9(z,5)| < a(x) +bs"~!

' n—1

the space BV (€2). In such a space also nonsmooth versions of critical point theory

with a € L™(Q2) and p € }1 L { On the other hand, the natural domain of f is now

cannot be directly applied, as the Palais-Smale condition fails (see [11]). To overcome
this difficulty, it is possible to consider the functional f on LP(2) (with value +oo
outside its natural domain). If we add the stronger condition that a € L¥ (Q), then f
is the sum of a convex term and a functional of class C', and the expected result can
be obtained. Such a strategy has been applied in [11], to treat the case where f is even.
However, this further condition on a seems to be merely technical. Our aim is to show
that the assumption a € L"(2) is in fact sufficient. As in [11], we apply the nonsmooth
critical point theory developed in [4, 6], which provides general results for continuous

functionals defined on metric spaces. Among lower semicontinuous functionals (as f on
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LP(Q)), some particular classes can be treated. The main part of this paper, namely
section 3, is devoted to the study of a class of lower semicontinuous functionals, which
contains f and for which the theory of [4, 6] can be applied. Then, in the last section,

we prove the existence of a mountain pass point for f.

2. Some notions of nonsmooth critical point theory. Let us recall some
notions of nonsmooth critical point theory from [4, 6]. A similar approach to nonregular
functionals can be found also in [10, 9]. In the following of this section, X will denote

a metric space endowed with the metric d.

Definition 2.1. Let f: X — R be a continuous function and let u € X. We
denote by |df| (u) the supremum of the o’s in [0, +oo[ such that there exist 6 > 0 and a
continuous map H : B (u,0) x [0,8] — X such that

Vv € B(u,d),vt €[0,0] : d(H(v,t),v) <t,

Vv € B(u,d),vt €[0,6]: f(H(v,t)) < f(v) — ot.

The extended real number |df| (u) is called the weak slope of f at u.

The above notion can be extended also to lower semicontinuous functions, by

means of a tool introduced for the first time in [5].

Definition 2.2. Let f: X — RU {400} be a lower semicontinuous function
and b € R. We set

D(f)
fb
epi(f) = {(u,€) € X xR: f(u) <&}

{ue X : f(u) < 400},

{ue X : f(u) <b},

We define the function Gy : epi(f) — R putting Gr(u,§) = &.
In the following epi(f) will be endowed with the metric

=

d((u,€), (v, ) = (d(u,v)* + (€ = )*)?,

so that Gy is Lipschitz continuous of constant 1. Therefore Definition 2.1 can be applied
to Gy and |dGf| (u,&) < 1 for every (u,§) € epi(f).
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Definition 2.3. Let f: X — RU {400} be a lower semicontinuous function
and let u € D(f). We set

A9l (u fw)
i 1497 (u, £ () < 1,

Al () =3 T (gl (s p@)?
Yoo i 10| (u, £ () = 1.

It is shown in [6, Proposition 2.3] that the above definition is consistent with Defini-

tion 2.1.

Definition 2.4. Let f: X — RU {400} be a lower semicontinuous function.
We say that u € X is a (lower) critical point for f, if |df| (u) = 0. A real number c is
said to be a (lower) critical value, if there exists uw € D(f) such that |df|(u) = 0 and

flu) =c.

Definition 2.5. Let f: X — RU{+oo} be a lower semicontinuous function
and ¢ € R. We say that f satisfies the Palais-Smale condition at level ¢ ((PS). for
short), if from every sequence (up) in D(f) with |df| (up) — 0 and f(up) — c it is

possible to extract a subsequence (up,) converging in X.

3. Some abstract results. As pointed out in [6], the essential difficulty when
dealing with lower semicontinuous functions is that we do not know in general the
behaviour of |dGr| (u, &) at the points with & > f(u).

Therefore, the main result of this section is a theorem in the spirit of [6, Theorem
3.13] and [4, Theorem 4.4].

Theorem 3.1. Let X be a linear space, |-||, |||, two norms on X and ¢ >0
such that ||-||, < c||-||. Let Xo (resp. X1) be the space X endowed with the norm ||-||,
(resp. 1)

Let f: X - RU{+o0}, f = fo+ f1, such that:

(a) fo:Xo— RU{+00} is convezx, lower semicontinuous and for every ug € X there
exists r > 0 such that
Jo(u) = 400

llull—o0
lu=ugllg<r

(b) f1: X1 — R is of class CL;



Nontrivial solutions of quasilinear equations in BV 455

(¢) for every € > 0 there exist ¢ : X1 — R Lipschitz of constant ¢ and 1 : Xg — R of
class C' such that fi = @ +1).

Then the following facts hold:

(i) f: Xo — RU{+o0} is lower semicontinuous and for every ug € X there ezists

r > 0 such that

(3.1) lim inf Jw) > 05
lull=eo ||ul|
lu—ugllg<r

(i) f1: Xo — R is continuous on X1-bounded subsets;
(#0i) € > f(u) = |doGf| (u,€) = 1;
() if u € D(f), then |df| (u) < c|dof|(u), where |dyf| (resp. |df|) denotes the weak

slope of f in Xo (resp. in X1).

Proof. (i) Let up € X, r > 0 according to (a). Without loss of generality, we
can suppose there exists vy € D(fo) such that ||ug — up||, < r. Let 1 > 0 be such that

Vu e Xt |lu—uolly <7 lJu—wvo| =271 = folu) > fo(vo) + 1.

If ||lu — ugl|y < r and ||u — vo|| > 71, taking into account the convexity of fy, we deduce
that

ﬁmm4sﬁ@muil—W—m)smw+———4ﬁw—ﬁm»

L]
[[u—vol| [[u —wol|
hence

folw) > foluo) + — lu— vl
1

Thus, we have shown that, for every uy € X with corresponding r according to (a), it

is

(3.2) Myyr = liminf folw)
’ lull~oc || w]
[lu—ugllg<r

Let up € X and r > 0 according to (a). Let € €]0,my, [ and fi = ¢ + 1 according to
hypothesis (c¢). Then, for every u € X it is

fu) = folu) + ¢(u) + 9 (u) = fo(u) + ¢ (u) + ¢(0) — e lu] -
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Unless reducing r, we can suppose that ¢ is bounded on By (ug, 7). Therefore, from

(3.2) it follows that for every up € X and r > 0 according to (a) it is
[lw]|—o0 -
lu=ugllg<r ||UH

Now, if (uy) is a sequence convergent to u in Xg with f(uy) < ¢, it follows that

(up) is bounded also in X;. From assumptions (a) and (b) we deduce that
(u) < liminf f(u),
namely that f: Xy — R U {+o0} is lower semicontinuous.

(ii) Let € = 1/h and let ¢p, ¥ as in (c¢). Then we have

1 1
lull = K = [on(u) = en(0)] < 5 Jlull < 7 K.

It follows that (15(-) + ¢n(0)) is uniformly convergent to f; on X;-bounded subsets,
whence the assertion.

(iii) Let (u,&) € epi(f) with & > f(u). Without loss of generality, we can
assume that fi(u) = 0. By (i), there exists r €]0, 1] and K > 0 such that

(3.3) Yo €e X : { ﬁ”j ;EJ; = |lv—ul| <K

Let § € }O,min{%‘)(“),r}[ and € > 0 such that eK < §/4. Choose ¢ and 9
according to (c) with ¢(u) = 9 (u) = 0 and set, for every v € X,

fow) = fo(v) + (do(u),v — u)o,
() = Y) = (d(u),v —uo,
so that f = fo+ ¢ + ¢ and d@@(u) =0 in XJ.
Let H : (B((u,€),8) Nepi(fo)) x [0,0] — epi(fo) be defined by
. t(u —v)
o = -+ — o)

) -
o=l a— fotw)

H((Uvu)vt) 2,#—(/1—];0(11/

‘ 2
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As in the proof of [6, Theorem 3.13], it follows that for every (v,u) € Bo ((u,€),0) N
epi(fo) and every ¢ € [0, 4], it is
d(H (v, p), 1), (v, 1)) <,
§—0— fo(u)
R0 fow)?

Let & €]0,0/2[ such that |[¥(v)| < 6/2 if v € By (u,d). Then, if (v,p1) €
Bo ((u, &),0") Nepi(fo + @) it is, taking into account (3.3),

t.

Gr, (M (0, p).1)) < Gy, (v.10)

5 5 5§ § 3
I — o) =& < |p =&+ |pv)] < 5 +ellv—ul < S tek <o+ =50

so that it is easy to check that (v, — ¢(v)) € Bo ((u,£),8) Nepi(fo).
If p>0, by the definition of H we can deduce that, for every (v, 1) €Bo ((u,§), ")
Nepi(fo + )

- K
1 (0,11 = (o). pt) — o] = Iv -« ot < 28
Vo=l + = o) — o]
since |11 — o(v) = fo(w)] 2 [¢ = fo(w)| — In— € ~ ()| > 26— § = § > 5.

1
Let now p = (1 + %) , and define H : (Bg ((u, ), ) Nepi(fo+ ) x [0,8] —
epi(fo + ¢) setting

H (0, 10),8) = (Ha((v, 1 = 0(0)), pt), Ha (v, 11 = (), pt) + o(Ha((v, 1 = 0 (0)), pt)).

It is readily seen that H actually takes his values in epi(f 0+ ).

Furthermore, since ¢ is continuous in Xy on Xj-bounded sets, (3.3) implies that
H is continuous.

It is
2

XoxR

|

= [Ha((v, 1t = 0(0)), pt) = 0[5+ (Ha((v, 11— (), pt) + o (Ha (v, 1= p(©)), pt)) —u)2=

H (v, 1), 1) = (v, 1)

= (0, = p(0)). pt) — o2+ (Fa(v. 0 — 0(0)). pb) — (1 — () +

+2(Ha((v, 1 = (), pt) = (1 = (0))) (P(H1((v, 1 = (), pt)) = (v))+
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2
+(p(Ha (v, 1= (), pt)) = p(v)) <
< P2 + 2pte |[Ha((v, = 0(v)), pt) — vl + €% [ Ha((v, 1t — @(v)), pt) — v]|* <
2172 2
< p*t’ + ZpQ%tQ + 0 ;2{ t2 = p*t? (1 + %) =%

Moreover,

Gy (FU(w,1). 1)) = Hal(0, 1 — 9(v)). pt) + 9(H1 (0, 1 — p(v)). pt)) =

= G;, (H((0. 1 = p(w)). pt)) + @(Ha((v, 1 — 9(v)), pt)) <

< - ) — £ 06— folu)
V2 + (640 — fo(u))?

&€~ 68— folu) pt—l—sﬁt:

LRt e o Ry g
£~ 68— folu) K) t

5 ) )

(W - fow)y 9

pt + o(Hi((v, p — p(v)), pt)) <

therefore we have

— &

(W €+0—fow)? O

But by [6, Proposition 2.7] it is

‘dogf(ﬂrcp} we) > £~ 6~ folu) K) 1

doy| (. €) = |dop, y .y 3| (:€) = |doy, 1 | (),
hence by the arbitrariness of € €]0, 5 K[ it is

e s L0 o)
TV E - ho)?

|do G|

and finally by the arbitrariness of § € }0, min{ig(“),r}{ we obtain
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(iv) Let w € D(f) and r > 0 corresponding to u as in (a). For every v € X, let
fow) = fo(v) + fi(w) + (dfr(w),v — u)1,
fiw) = fi() = fulw) = (dfi(w),0 = u)r.

Then fb is convex; furthermore, we can choose € €]0, m,, [ and obtain the decomposition

fo(v) = fo(v) + fi(u) + (dp(u),v — u)1 + (dp(u),v — u)o

with ||dg0(u)\|X{ < e. It follows that

As in the proof of (i), we deduce that fy : Xg — R U {400} is lower semicontinuous,
hence fo satisfies assumption (a). Of course, fi : X — R is of class C! with fi(u) =0
and dfi(u) = 0. It is easy to see that fi satisfies also assumption (c) with @(v) =
o(0) — pl(u) — (dp(u), v — w1, Do) = (o) — H(u) — (dib(w),v — u)o and di(u) = 0.
Therefore, it suffices to consider the case f1(u) = 0, df1(u) = 0. Moreover, when we
apply (c¢), we can ask that dy(u) = 0.

Since the case |df| (u) = 0 is obvious, let 0 < ¢ < |df| (u). From [6, Proposition
2.7] we deduce that |dfy| (u) = |df| (u). As in the proof of [6, Theorem 2.11], we can
find w € X such that

o
folw) < fo(u) = o flw —ul < fo(u) = — lw—ul,.
Let 6 > 0 be such that 26 < ||w — ul|, and
o
Voe X |v—ul,<d= folw) < folv) — - lw— vl -

As in the proof of [6, Theorem 2.11], we can define a continuous map H : By (u,d) X
[07 5] - XO by
t

Hw,t)=v+ ————
8 =V o,

(w — )

and we have
[H(v,t) —vllg < t,
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fo(H(v,1)) < folv) — Zt.

c
By (i), there exists K > 0 such that

Voe X flv—ul, <9, flv) < flu)+1=|v|]| <K.

Now let € > 0 and let f; = ¢ +1 according to (c) with dip(u) = 0. If ||v — ul|, < 6 and
f(v) < f(u) + 1, we have

lw =l ,  _lwll + &

[p(H(v,1)) — (v)| < e|[H(v,t) —v]| = 37— <
[w =l o

t.

It follows
lw]|| + K> y

(fo+ @) (H(v,1)) < (fo + ©)(v) — <% . .
hence |do(fo + ¢)| (u) > (E — 5%). Since dip(u) = 0, from [6, Proposition 2.7] we

C
deduce that
] + K
3 .

By the arbitrariness of ¢, we have |dyf|(u) > o/c, and the assertion follows by the

ldo(fo+ )] (u) =

g
C

arbitrariness of o. O

Now we prove a theorem of saddle-point type for our class of functionals.

Theorem 3.2. Let X and f be as in Theorem 3.1.

Assume that
(a) there exist r > 0 and o > 0 such that

Vue X ully=r = f(u) > f(0) + o

(b) there exists uy € X with ||ui|ly > and f(u1) < f(0);

(c) for every b € R, f° is complete with respect to ||-||, and f : Xo — R U {+oo}
satisfies (PS)., where

c:=inf su t)),
7GFOS%J"(W( )

I = {y € C(0,1]; Xo) : 7(0) = 0,7(1) = wa }.
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Then there exists u € X such that f(u) = ¢ and

Vo € X : fo(v) = fo(u) — (dfi(u),v —uh.

Proof. We apply Theorem 4.5 of [4]. Even if Xj is not complete, it is easy to
see that epi(f) is complete, and this is enough.

By (i) and (iii) of Theorem 3.1, f : Xo — R U {+o0} is lower semicontinuous
and satisfies condition (4.1) of [4]. Since fy is convex, we have that v(t) = tu; belongs
to I and that

¢ < sup f(tuy) < +oo.
0<t<1

Then, by Theorem (4.5) of [4] there exist v € X with f(u) = ¢ and |dof|(u) = 0;
but for (iv) of Theorem 3.1 it is also |df| (u) = 0, hence the assertion follows from [6,
Theorem 2.11]. O

4. An application. In this section we apply our abstract framework to obtain

an existence result for a class of functionals containing an area-type term.

Let © be a bounded open subset of R" with Lipschitz boundary, ¥ : R® — R

and g : 2 x R — R two functions satisfying the following conditions:

(¥) the function V¥ is convex and there exist ¢,d > 0 such that

VEER™ 1 d[¢] — e < V(£ < (€] +1);

(g1) the function g satisfies the Carathéodory conditions and there exist a € L™(£),
bERandpE}l,%[suCh that

lg(z,8)| < a(z) +b|sf~!

for a.e. x €  and every s € R.

S

Furthermore, let G(x,s) = / g(x,t)dt.
0
According to [3, 8], we define f : BV (Q2) — R setting f = fo + f1, where

folu) :/Q‘I’(Vua)dl‘—i—/ﬂ‘lloo (|§ZZ|>d|vu5|(g;)+/m T (uv) dH(z),
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- /Q G(z,u)dx

Vu = Vu® + Vu® is the Lebesgue decomposition of Vu, |Vu®| is the total variation
of Vu®, Vu®/|Vu?| is the Radon-Nikodym derivative of Vu® with respect to |[Vu®|, U™
is the recession functional associated with ¥, and v is the outer normal to €.

As a norm in BV (), we shall consider
lall gy = / Vul| de +/ d|Ve’| () +/ lu| dH™\(x).
Q Q o0

Lemma 4.1. Let v : [0, +00o[— R be a convex function such that
vEEeR™ 1 W (&) = (|-

Then we have

Yu € BV(Q) : fo(u) > L™ () v <%) .

Proof. First of all, for any z,y,z € [0,400[ and A > 0 we have

(4.1) Ay (LW) <Xy (A) +77(y) + (7).

In fact, for any € €]0,1/2] we have

) (1o e85 3)-
<A1 - 2e)y ()\>+/\E’y <x )—i-/\sfy( ’Z/\) <

< A1 —2¢e)y <§) + 2Xey(0) 4+ Aeny™ </\ + E}\) + Aey™ <f\ + E%) =

= A1 —2e)y (;) +2Xe7(0) + v (ex + y) + v (ex + 2).

Going to the limit as € — 0, we get (4.1).

Now let u € BV (). Since v*°(|£]) < U*>(§), from Jensen’s inequality and (4.1)
we deduce that

folw) = [ (Ve o+ [ 3= dVe @)+ [ fuly™0)an a) >
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> (@ (@) [ vatde) o ([ dive @)+ ([l an i) =
> o @) (),

whence the assertion. 0O

In particular, combining the previous lemma with assumption (¥), we deduce
that there exist ¢, d > 0 such that

(4.2) Yu € BV(Q) : dlull gy — & < fo(u) < &(|[ull gy +1)-

Lemma 4.2. For every € > 0 there exist ¢ : BV(Q2) — R Lipschitz of
constant €, 1 : LP()) — R of class C such that fi = p + 1.

Proof. Let € > 0 and
g1 (.’E, 5) = min{ma‘x{g(xa 5)7 —a(x)}, a(l‘)},

ga(w,s) = g(z,8) — gi(x,),

so that |g1(z,s)| < a(z) and |ga(z, s)| < b|s[P~L.
Let € > 0 be such that ||HL1 <2l gy; if k € R, let a(z) = a(x)X{a(z)>} (2),
and choose k such that ¢ ||a@l|,, < e. Now let

91 (.1‘, 8) = 0 (J}, S)X{a(m)zk} (.1‘),

gl(xus) = gl($78)X{a($)<k}(x)7

so that [g,(z,s)| <a(x) and |g,(x, s)| < k.
Finally, let

Ci(w,s) — /Osyl(a:,t)dt,
Galars) = [ Brlot) + ga(ast)]
pu) = /QGl(:L‘,u)dx,

P(u) = /QGQ(:L‘,u)dx.
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Since
[G1(2,5) + ga(x,5)| < k+bs[P",

it is well known that 1 : LP(Q) — R is of class C*.

Furthermore, it is
[ov) = oW < | ale) o —ul do < [l o - ul_; <

<zclall, lv—ullgy <ellv—ullgy,

namely ¢ : BV () — R is Lipschitz continuous of constant . [

Now we consider the space X = BV (2), we denote by ||-|| the norm of BV (1)
and by ||-||, the norm of L”(Q2).

Theorem 4.3. The following facts hold:
(i) for every b € R, f° is complete with respect to |-||y;
(i) f1: Xo — R is continuous on X1-bounded subsets;
(#00) & > f(u) = |doGy| (u,§) = 1;
(i) if w e D(f), then |df| (u) < cl|dof] (u).

Proof. For (¥), (¢91) and the previous lemma, hypotheses of Theorem 3.1 are
satisfied; therefore (ii), (iii) and (iv) follow by Theorem 3.1

(i) Let (up) be a sequence in BV () convergent to u in LP(Q) with f(up) < b.
Let € = d/2 and let ¢, 9 be as in the previous lemma. Since (¥ (up)) is bounded and

folun) + @(un) —p(0) > < [unll — ¢,

N,

we have that (uy,) is bounded in BV (€2), so that u € BV (€2). From (i) of Theorem 3.1

assertion follows. O

Let us now assume the following superlinearity condition on G:

(g2) there exist ¢ > 1 and R > 0 such that for a.e. x € Q and every s € R with |s| > R
we have
0 < qG(x,s) < sg(z, s).
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From (g1) and (gs) it follows (see e.g. [13, Theorem 6.2]) that there exists ag € L'(Q)
such that for a.e. x €  and every s € R we have

(4.3) G(z,5) > (R™"min{G(x, R), G(z,~R)}) ||’ - ao(a),
(4.4) qG(z,s) < sg(z,s) + ap(z).
Let us also recall that hypothesis (¥) implies that ¥ is Lipschitz continuous of

constant ¢, and therefore there exists M € R such that

(1.5 0+ D) - w@) > T ue) -

q—1

(4.6) (¢ +1)W™(§) — ¥ (2¢) 5

v

v (e).
Theorem 4.4. The following facts hold:
(a) for every u e BV (Q)\ {0} we have

lim f(tu) = —oc;

t—+o0
(b) for every c € R, f: Xo — RU {400} satisfies (PS)..
Proof. (a) Let u € BV(Q) \ {0}; from (4.2) and (4.3) it follows that
fltu) < élt|||ul| — R_q\t\q/ﬂmin{G(x,R),G(ac, —R)}) |u|? dz —l—/ﬂao dx,
hence

lim f(tu) = —oc.

t——+o0

(b) Let ¢ € R and let (up) be a sequence in BV () such that |dof| (up) — 0
and f(up) — c.

From (iv) of Theorem 4.3 it follows that |df| (uj) — 0. From [6, Theorem 2.11],
there exist wy, € (BV(Q))’ such that lwall gy )y — 0 and

Vo e X s fo(0) 2 folun) + [ glosun)(v =) do+ (wn,v = ).
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Choosing v, = 2u;, we have, by (4.4),

fo(2up) > fo(up) +/Quhg(:1:,uh) dx + (wp, up) — /an dx.
By the definition of f, we obtain
af (wn) = (wn, ) + [ a0da = (g4 1)folun) = fol2un)

Therefore, by (4.2), (4.5) and (4.6), it follows that

(¢—1)
2

af (un) + lwall gy )y llunll +/an dr > folup) — ML™ (Q2) >

—1- —1
> do—d unl| - T5—=e - ML (9).

Hence (uy,) is bounded in BV (2) and the assertion follows from the compact embedding
of BV(Q) in LP(Q) (see [7]). O
Now we state the last hypothesis needed for the geometrical conditions of the

mountain pass theorem:

() there exist a € [1, -2~ and a1 € Ltama (©) such that

n—1
o — U(0)
liminf —>———= > 0,
-0 €1
G(x,s) 0
50 ‘S|a )

G(z,5)| < ai(z) |s|* + bls|7T

for a.e. x € Q and every s € R.

Lemma 4.5. Let (up) € BV(Q) with ||un|| = 1 and pp, > 0 with p,, — 0.

Then it is
Jo(prun) — fo(0)

lim inf =
h—o00 P

> 0.

Proof. Without loss of generality, we can assume ¥(0) = 0. Let § > 0 be such
that
€ <d = W(E)=a".
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Since V¥ is convex, for every £ € R" with [£] > § we have
5 )
¥ (gi6) < g vle)
@) =g

Bly (9¢) s ga
¥(©) > £ (ge) =0l

hence

If we define 7 : [0, +00[— R by

gso‘ fo<s<g
v(s) = a1
0%s — O‘T5°‘+ ifs>9§

we have that v is convex and satisfies
VEER™ : W(§) = v(I€])-

Taking into account Lemma 4.1, we deduce that

Ph
> L7 (0O
fo(prun) = L () (ﬁn (Q)>
and the assertion follows. O

Lemma 4.6.  Let (up) € BV(Q) with ||up|| = 1 and pp, > 0 with p,, — 0.

Then it is
T G(l‘;)%h%) _0
in L1(€2).
Proof. Up to a subsequence, we can assume that uy(z) — u(z) for a.e. z € Q.
Moreover, (uy) is bounded in Lo (Q).

From () we deduce that

h—o00 Ph,

for a.e. x €  and that

G(z, ppup, Ty _n_

LG )] < g @) T 7
Ph

Since the right hand side of the last inequality is strongly convergent in L'(Q), the

assertion follows from the Lebesgue theorem. 0O
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Theorem 4.7. There exists r > 0 such that

Yu € BV(Q) : ||lullg =7 = f(u) > f(0) +r*+t,

Proof. By contradiction, let (up) be a sequence in BV () such that |up||, =
1/h and

Flun) < F0) + ey
From (i) of Theorem 3.1, it follows that ||uy|| is bounded; hence, from (ii) of Theorem 3.1
we deduce that
JHm fi(un) =0.
Define 7 : [0, +oo[— R as in Lemma 4.5. Since

limsup L™ (2 (M> < limsu up) — fo(0)) <0,
wsup £ (©) 7 (Aem-) < lnsup(alun) — fo(0) <
we have |luy|| — 0.
Let pp = |Jug||, wp = up/ ||unll; applying Lemmas 4.5 and 4.6 to pp, and wy, we

deduce that
fo(un) = fo(0)

lim inf < > 0,

h—o0 P,
tim L) gy JoG@un)dz
h—oo p% h—oo p;ol‘

It follows lim inf fun) — f(0)

> 0, whence a contradiction. 0O
h—o0 p%
Since f : BV (2) — R is the sum of a convex term and a term of class C! (when
BV (Q) is endowed with its natural norm), it is natural to say that u € BV(f) is a

(generalized) critical point for f if
Vv € BV() : fo(v) = fo(u) — (dfi(u),v —u).

Remark 4.8. Under mild assumptions of ¥, it is shown in [2] that the above
relation implies that u satisfies a suitable Euler equation.

We may now prove the main result of this section.

Theorem 4.9. Assume that (¥), (g1), (g2) and («) hold. Then there exists
u € BV(Q)\ {0} such that u is a critical point for f.



Nontrivial solutions of quasilinear equations in BV 469

Proof. For Theorem 4.4 and Theorem 4.7 all the hypotheses of Theorem 3.2

are satisfied. Hence the assertion follows from Theorem 3.2. O

1]
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