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SUMS OF A RANDOM NUMBER OF RANDOM VARIABLES

AND THEIR APPROXIMATIONS WITH ν-ACCOMPANYING

INFINITELY DIVISIBLE LAWS
∗

Lev B. Klebanov, Svetlozar T. Rachev

Communicated by J.-P. Dion

Abstract. In this paper a general theory of a random number of random vari-
ables is constructed. A description of all random variables ν admitting an analog
of the Gaussian distribution under ν-summation, that is, the summation of a ran-
dom number ν of random terms, is given. The ν-infinitely divisible distributions
are described for these ν-summations and finite estimates of the approximation of
ν-sum distributions with the help of ν-accompanying infinitely divisible distribu-
tions are given. The results include, in particular, the description of geometrically
infinitely divisible and geometrically stable distributions as well as their domains
of attraction.

1. Introduction. The study of sums of a random number of variables was
launched in Robbins’s pioneering paper [27]. The next essential steps in the develop-
ment of the theory of limiting behavior of sums of a random number of random terms
were Dobrushin’s paper [3] and the series of papers by Gnedenko and his students [6],
[8], [7]. A partial summary of this direction is given in [19].

Recall that in the classical scheme infinitely divisible distributions can be de-
fined in two ways. In the first definition a random variable (r.v.) Y is called infinitely
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divisible if for any integer n ≥ 2 there exist independent identically distributed (iid)

r.v.’s X
(n)
1 , . . . ,X

(n)
n for which Y

d
= X

(n)
1 + · · · + X

(n)
n (here

d
= denotes equality of

distributions). The second definition consists in the fact that only infinitely divisible
distributions are limits of increasing sums of independent r.v.’s in triangular arrays
provided that the terms are infinitely small.

In the classical scheme both definitions are equivalent. However, for sums of
a random number of r.v.’s this is no longer so. The results of Robbins, Dobrushin,
Gnedenko, and many others are generalizations of the second definition, see the review
in [23], [24].

Klebanov et al. [14] generalized the first definition to the case where the number
of terms has geometric infinitely divisible and gave the definition of geometrically stable
distributions. These concepts proved to be sufficiently productive, see [17], [21], [22],
[18] for more than 50 references on applications of random summation schemes in
queueing theory, reliability, branching processes, mathematical finance, environmental
processes and others.

An attempt to investigate more general summations than the geometric ones
was made in [15], [16]. It was based on some limit theorems for a random number of
terms.

In this paper we construct a general theory of summation of a random number
of random variables generalizing the first definition of infinite divisibility. We describe
all random variables ν admitting an analog of the Gaussian distribution under the
summation of ν random terms. For these summations we describe all the ν-infinitely
divisible distributions (i.e., infinitely divisible in the sense of an analog of the first
definition). This allows us to introduce the concept of ν-accompanying infinitely di-
visible distributions as well as obtain finite estimates of the rate of approximation of
the distributions of ν-sums using the ν-accompanying infinitely divisible distributions.
Furthermore, a description of geometrically infinitely divisible and geometrically stable
distributions, sharp estimates of their approximation, and their domains of attraction
are obtained.

2. ν-Gaussian random variables. Let X1,X2, . . . be a sequence of iid r.v.’s.
Assume that {νp, p ∈ ∆}, ∆ ⊂ (0, 1) is a family of nonnegative integer-valued r.v.’s
independent of {Xj , j ≥ 1}. It is then assumed that there exists Eνp and that Eνp =

1/p for all p ∈ ∆. We study the distributions of sums Sp =
νp∑

j=1
Xj , j ∈ ∆.

Definition 1. A r.v. Y is called ν-infinitely divisible if for any p ∈ ∆ there

exists a sequence of iid r.v.’s {X(p)
j , j ≥ 1} independent of νp such that

(2.1) Y
d
=

νp∑

j=1

X
(p)
j .
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Definition 2. A r.v. X is called ν-strictly Gaussian if EX = 0, EX2 < ∞
and for all p ∈ ∆

(2.2) X
d
= p1/2

νp∑

j=1

Xj ,

where {Xj , j ≥ 1} is a sequence of iid r.v.’s independent of {νp, p ∈ ∆}, and X
d
= X1.

Distributions of ν-infinitely divisible (ν-strictly stable, ν-strictly Gaussian) r.v.’s
are called ν-infinitely divisible (correspondingly, ν-strictly stable and ν-strictly Gaus-
sian) distributions.

The first question of interest to us is how to describe families {νp, p ∈ ∆} for
which ν-strictly Gaussian r.v.’s exist.

Recall first that if P (1) and P (2) are the generating functions (gf) of two r.v.’s
taking natural values, then their superposition P (1) ◦ P (2)(z) := P (1)(P (2)(z)) is also a
gf of some r.v. that takes natural values.

Denote by Pp the gf of r.v. νp and by P a semigroup with operation of super-
position ◦ generated by the family {Pp, p ∈ ∆}.

Theorem 1. For a ν-strictly Gaussian random variable X to exist it is
necessary and sufficient that semigroup P be commutative.

P r o o f. Let f(t) be the characteristic function (ch.f.) of X. Then (2.2) is
equivalent to the system of equalities

(2.3) f(t) = Pp(f(p1/2t)), p ∈ ∆

fulfilled for all real t.

Consider (2.3) only for t ≥ 0. Let ϕ(t) = f(
√

t). It is easy to see that if f(t)
satisfies (2.3), then

(2.4) ϕ(t) = Pp(ϕ(pt)), p ∈ ∆

for t ≥ 0 and, conversely, if ϕ(t) satisfies (2.4), then f(t) = ϕ(t2) satisfies (2.3). This
implies that if f(t) does exist then it is symmetric.

Let p0 ∈ ∆. Denote the gf of νp0
by P (z). From (2.4)

(2.5) ϕ(t) = P (ϕ(p0t)).

Equation (2.5) is Poincaré equation (see [25]). Poincaré was interested in the exis-
tence and uniqueness of the analytic solutions of (2.5). It also occurs in the theory of
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branching processes (see, for example, [10]). It is well-known that (2.5) has a unique
and differentiable solution with initial values ϕ(0) = 1, ϕ′(0) = −a, where a ≥ 0 is
an arbitrary constant. This solution is the Laplace transform of a distribution A(x)
concentrated on R+. Thus

(2.6) ϕ(t) =

∫ ∞

0
e−txdA(x)

and ϕ(t) is determined to within a scale parameter. Clearly, if ϕ′(0) = −a 6= 0, then A
is not degenerate at zero.

It is clear that the solution of overdetermined system (2.4) (if it exists) must
satisfy (2.5), that is, it must coincide with (2.6). Of course, for (2.4) to have a solution,
it is necessary and sufficient that the solution of (2.5) be independent of the choice
p0 ∈ ∆; i.e. for every fixed p ∈ ∆, p 6= p0 equations

(2.7) ϕp(t) = Pp(ϕp(pt))

and (2.5) must have the same solutions with initial values ϕ(0) = ϕp(0) = 1, ϕ′(0) =
ϕ′

p(0) = −a, a > 0.
Let us show that (2.5) and (2.7) have the same solution if and only if

(2.8) Pp ◦ P = P ◦ Pp.

Suppose first that (2.8) holds. Let ϕ(t) be a solution of (2.5) with the desired
initial values. Then Pp(ϕ(tp)) = Pp(P (ϕ(tp0p))) = P (Pp(ϕ(tp0p))) satisfies (2.5). In

addition, Pp(ϕ(tp))|t=0
= 1 and

d

dt
Pp(ϕ(tp))|t=0

= −a.

Consequently, under (2.8) equations (2.5) and (2.7) have the same solution.
Assume now that (2.5) and (2.7) have the same solution. Then Pp(P (ϕ(pp0t))) =

Pp(ϕ(pt)) = ϕ(t) is the Laplace transform of distribution function A(x) which is not
degenerate at zero, that is, the values of ϕ(t) for t > 0 fill interval (0, 1]. Consequently,
P (Pp(z)) = Pp(P (z)) for z ∈ (0, 1], which implies (2.8).

Let us return to (2.3). It follows from (2.6) that f(t) must have the form

f(t) =
∞∫
0

e−t2xdA(x). In addition, (2.3) is consistent if and only if (2.4) is consistent,

that is, if and only if (2.8) is fulfilled for any p, p0 ∈ ∆. The latter is clearly equivalent
to the commutativity of P.

Remark 1. If P is commutative, then the ch.f. of a ν-strictly Gaussian
distribution has form f(t) = ϕ(at2), where a > 0 is a parameter and ϕ(t) is a solution
of (2.5) with ϕ(0) = −ϕ′(0) = 1.

Corollary 1. P is commutative if and only if for z > 0 the representation

Pp(z) = ϕ

(
1

p
ϕ−1(z)

)
, p ∈ ∆, holds, where ϕ(t) is a differentiable solution of (2.5)

provided that ϕ(0) = −ϕ′(0) = 1.
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Let us turn to examples of families r.v.’s {νp, p ∈ ∆} admitting ν-strictly
Gaussian laws.

Example 1 (The classical scheme of summation). Let νp =
1

p
with probability

1 and p ∈ ∆ = {1/n, n ∈ N}. Clearly, Pp(z) = z1/p. It is also clear that Pp1
◦ Pp2

(z) =
z1/(p1p2) = Pp2

◦ Pp1
(z). By virtue of Theorem 1, there exists a ν-strictly Gaussian

distribution. Of course we are dealing with the classical scheme and ν-strictly Gaussian
distributions coincide with ordinary Gaussian ones.

Example 2. Let νp be a geometric r.v. with parameter p : P{νp = κ} =
p(1 − p)κ−1, κ ∈ N. We have Pp(z) = pz/(1 − (1 − p)z). It is easy to see that

Pp1
◦ Pp2

(z) =
p1p2z

1 − (1 − p1p2)z
= Pp2

◦ Pp1
(z). Therefore, there exists a ν-strictly

Gaussian distribution. Equation (2.5) has the form (for p0 ∈ (0, 1))

(2.9) ϕ(t) =
p0ϕ(p0t)

1 − (1 − p0)ϕ(p0t)
.

As is known (see [2] and [12]) the Laplace transforms of the exponential distribution
are solutions of form (2.6) of this equation, that is, ϕa(t) = 1/(1 + at). In particular,
ϕ(t) = 1/(1 + t) is the unique solution of (2.9) provided that ϕ(0) = −ϕ′(0) = 1.
Therefore ν-strictly Gaussian distribution are Laplace distributions with ch.f.

(2.10) f(t) = 1/(1 + at2), a > 0.

Example 3. Let ν be a r.v. taking natural values and having Eν > 1. Denote
p0 = 1/Eν and let P (z) be the gf ν. Let

(2.11) Pp0
(z) = P (z), Pp2

0
(z) = P (P (z)) = P ◦2(z), . . . , Ppn

0
(z) = P ◦n(z),

and suppose that ∆ = {pn
0 , n ∈ N}. Assume that {νp, p ∈ ∆} is a family of r.v.’s with

gf’s (2.11). Clearly P is commutative since it is a semigroup of degrees in the sense of
superposition of function P (z). The system (2.4) has form

ϕ(t) = P (ϕ(p0t)) = P ◦2(ϕ(p2
0t)) = · · · = P ◦n(ϕ(pn

0 t)) = · · ·

It coincides with (2.5): ϕ(t) = P (ϕ(p0t)).
Example 3 shows that a summation generated by only one r.v. ν is equivalent

to a summation related to the family {νp, p ∈ ∆}, ∆ = {pn
0 , n ∈ N}. Note that this

circumstance has a more general character: instead of {νp, p ∈ ∆} (for generic ∆) we
can consider a family of all r.v.’s ν whose gf’s belong to P. Everywhere below (unless
otherwise stipulated) we assume {νp, p ∈ ∆} to be such that {Pp, p ∈ ∆} = P, with P

being commutative semigroup.
A solution of (2.5) given by (2.6), differentiable on [0,∞), and satisfying the

conditions ϕ(0) = −ϕ′(0) = 1 will be called standard.
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3. ν-infinitely divisible random variables. We assume further that 0 is a
limit point of ∆ ⊂ (0, 1).

We start with an analog of de Finetti’s theorem, (see, for example, [20]).

Theorem 2. Let ϕ be a standard solution of (2.5). A r.v. Y with ch.f. g(t)
is ν-infinitely divisible if and only if

(3.1) g(t) = lim
m→∞

ϕ(αm[1 − gm(t)]),

where αm is a positive constant and gm(t) is a ch.f.

P r o o f. (i) We first show that if h(t) is a ch.f. and α a positive constant, then

(3.2) Ψα(t) = ϕ(α[1 − h(t)])

is a ch.f. Since 0 is a limit point of ∆, then for α > 0 and sufficiently small p ∈ ∆,

hα(t) = (1 − αp) + αph(t) is a ch.f. Consequently, ϕ

(
1

p
ϕ−1 (hα(t))

)
is a ch.f. (this

is the ch.f. of
νp∑

j=1
Xj , where Xj are iid with ch.f. hα(t)). However, ϕ(α[1 − h(t)]) =

lim
p→0

ϕ

(
1

p
ϕ−1 (hα(t))

)
, which proves the assertion of part (i).

(ii) For any α > 0 and ch.f. h(t), function (3.2) is ν-infinitely divisible. Indeed,

for all p ∈ ∆ function Ψα(t) is a ch.f. of
νp∑

j=1
Xj , if {Xj , j ≥ 1} is a sequence of iid

variables with ch.f. Ψαp(t).

(iii) The function (3.1) is ν-infinitely divisible. This follows from (ii) and the
fact that the limit of ν-infinitely divisible ch.f.’s is also a ν-infinitely divisible function.

(iv) Any ν-infinitely divisible ch.f. g(t) can be written in the form of (3.1).
Indeed, if g(t) is a ν-infinitely divisible ch.f., then for any p ∈ ∆ there exists a ch.f.

gp(t) such that g(t) = ϕ

(
1

p
ϕ−1gp(t)

)
. Hence, gp(t) = ϕ(pϕ−1g(t)), is a ch.f. By (ii),

ϕ

(
1

p
(1 − gp(t))

)
= ϕ

(
1

p
(1 − ϕ(pϕ−1g(t)))

)
is a ν-infinitely divisible ch.f. Finally,

g(t) = lim
p→0

ϕ

(
1

p
[1 − ϕ(pϕ−1g(t))]

)
, which proves (iv). �

Theorem 3. Let ϕ be a standard solution of (2.5). A ch.f. g is ν-infinitely
divisible if and only if it is representable in the form of

(3.3) g(t) = ϕ(− log f(t)),

where f(t) is an infinitely divisible ch.f. (in the classical scheme).
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The proof of this theorem follows directly from a comparison of Theorem 2 and
the Finetti’s theorem.

Theorem 3 leads to analogs of the Lévy and Lévy-Khintchine representations
for ν-infinitely divisible ch.f.’s, and furthermore, it serves as a basis for the definition
of such concepts as ν-strictly stable, ν-stable, and ν-semistable ch.f.’s (r.v.’s), see [20].

Corollary 2 (Analog of the canonical Lévy-Khintchine representation). A
function g(t) is ν-infinitely divisible ch.f. if and only if

g(t) = ϕ

(
ita −

∫ ∞

−∞

(
eitx − 1 − itx

1 + x2

)
1 + x2

x2
dθ(x)

)
,

where a is a real number, θ(x) is a nondecreasing bounded function, θ(−∞) = 0, and
ϕ is the standard solution of (2.5). This representation is unique (of course for a fixed
family {νp, p ∈ ∆}).

Corollary 3 (Analog of the canonic Lévy representation). A function g(t) is
a ν-infinitely divisible ch.f. if and only if

g(t) = ϕ

(
ita +

σ2t2

2
−
∫ −0

−∞

(
eitx − 1 − itx

1 + x2

)
dM(x)

−
∫ ∞

+0

(
eixt − 1 − itx

1 + x2

)
dN(x)

)
,

where ϕ is a standard solution of (2.5), a is a real number, σ is a non-negative number,
and functions M(x) and N(x) satisfy the conditions:

(i) M(x) and N(x) do not decrease on intervals (−∞, 0) and (0,+∞), respec-
tively;

(ii) M(−∞) = N(0) = 0;

(iii) integrals
0∫

−ε
x2dM(x) and

ε∫
0

x2dN(x) are finite for any ε > 0.

This representation is unique.

Remark 2. If a standard solution of (2.5) ϕ is the Laplace transform of
an infinitely divisible distribution, then ν-infinitely divisible distributions are infinitely
divisible (in the regular sense), see [4, Section XIII.7].

Definition 3. A function g(t) is called a ν-stable (correspondingly, ν-strictly
stable, ν-semistable) characteristic function with exponent α if it admits representa-
tion (3.3) in which ϕ is a standard solution of (2.5) and f(t) is the ch.f. of a stable
(correspondingly, strictly stable, semistable) law with exponent α.

However, care should be exercised when using Definition 3. We illustrate this
with an example comparing ν-strictly stable and ν-semistable ch.f.’s.
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Let X1,X2, . . . be a sequence of iid symmetric r.v.’s. Assume that for some
α ∈ (0, 2) and for all p ∈ ∆

(3.4) X1
d
= p1/α

νp∑

j=1

Xj

is fulfilled. From (3.4) it apparently follows that X1 is ν-infinitely divisible. Conse-

quently, we have g(t) = ϕ(− log f(t)), Pp(z) = ϕ

(
1

p
ϕ−1(z)

)
. Therefore (3.4) takes the

form of ϕ(− log f(t)) = ϕ

(
1

p
ϕ−1[ϕ(− log f(p1/αt))]

)
, that is,

(3.5) f(t) = f1/p(p1/αt), p ∈ ∆.

If ∆ ⊃ {1/n : n ∈ N}, then it clearly follows form (3.5), that f(t) is a strictly stable
and, consequently, g(t) is a ν-strictly stable ch.f. in the sense of Definition 3. However,
if ∆ = {pn

0 : n ∈ N} for a specific p0 ∈ (0, 1), then f(t) is a semistable ch.f. and, hence
g(t) is a ν-semistable ch.f. in the sense of Definition 3.

4. Accompanying laws. Let us now introduce the concept of accompanying
ν-infinitely divisible laws (ch.f.’s, r.v.’s). In the classical scheme (i.e., when νp = 1/p
a.s., p ∈ {1/n : n ∈ N}) the concept of an accompanying infinitely divisible distribution
belongs to [5]. It proved to be rather useful when approximating distributions of sums
of a large (but not random) number of random terms (see, for example, [1]).

Definition 4. Let X1, . . . ,Xn, . . . be a sequence of iid r.v.’s with ch.f. f(t).

Assume that ϕ(t) is a standard solution of (2.5). Let Sp =
νp∑

j=1
Xj . A r.v. Yp with ch.f.

(4.1) Ψp(t; f) = ϕ

(
1

p
(1 − f(t))

)

is called an accompanying ν-infinitely divisible r.v. for sum Sp. Its distribution function
(d.f.) is said to be accompanying ν-infinitely divisible for the d.f. of Sp. For the sake
of brevity, we speak of a ν-accompanying r.v. (ν-accompanying distribution)1 .

Let us now investigate whether distributions of sums Sp can be approximated
with a ν-accompanying distribution.

1In the classical case our definition differs somewhat from the one given by Gnedenko in [5]
who admits, in addition, the centering and normalization of f , that is, Gnedenko would have had

Ψp(t, f ; ap, bp) = ϕ

(
1

p
(1 − f(apt)e

ibpt)

)
. Everywhere below we will use the definition correspond-

ing to (4.1).
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First let us check whether this is possible in metric χ0 (for its properties see,
[29], [13], [26]); if X, Y are r.v.’s with ch.f.’s fX(t), fY (t), respectively, then

(4.2) χ0(X,Y ) = sup
t

|fX(t) − fY (t)|.

Denote by F+ the class of all r.v.’s with non-negative ch.f.’s.

Theorem 4. Let X1,X2, . . . be a sequence of iid r.v.’s, X1 ∈ F+. Suppose

that Sp =
νp∑

j=1
Xj and Y is a ν-accompanying r.v. for Sp. Then

(4.3) sup
X1∈F+

χ0(Sp,Xp) → 0 as p → 0, p ∈ ∆.

P r o o f. We have
sup

X1∈F+

χ0(Sp, Yp)

= max

[
sup

u∈[
√

p,∞)

∣∣∣∣ϕ
(

u

p

)
− ϕ

(
1

p
(1 − ϕ(u))

)∣∣∣∣ , sup
u∈[0,

√
p]

∣∣∣∣ϕ
(

u

p

)
− ϕ

(
1

p
(1 − ϕ(u))

)∣∣∣∣

]
.

For u ≥ √
p, it is clear that as p → 0, ϕ

(
u

p

)
→ 0, ϕ

(
1

p
[1 − ϕ(u)]

)
→ 0. Therefore,

as p → 0, sup
u∈[

√
p,∞)

∣∣∣∣ϕ
(

u

p

)
− ϕ

(
1

p
(1 − ϕ(u))

)∣∣∣∣ → 0. For u ≤ √
p, denoting ν =

u

p
, we

obtain

sup
u∈[0,

√
p]

∣∣∣∣ϕ
(

u

p

)
− ϕ

(
1

p
(1 − ϕ(u))

)∣∣∣∣

= sup
v∈[0,1/

√
p]

∣∣∣∣ϕ(v) − ϕ

(
−ϕ(pv) − ϕ(0)

pv
v

)∣∣∣∣→ 0, as p → 0;

in fact, (ϕ(pv) − ϕ(0))/(pv) → ϕ′(0) = −1 as p → 0 uniformly with respect to v ∈
[0, 1/

√
p]. �

Note that, generally speaking, the constraint X1 ∈ F+ cannot be waived.
Namely, if we consider a sequence of iid r.v.’s taking values 1 or −1 with probabi-
lity 1/2 each a.s. (p ∈ {1/n, n ∈ N}), then it is easy to calculate that χ0(Sp, Yp) does
not vanish as p → 0.

The condition of non-negativity of the ch.f. can be replaced by the condition
of non-negativity of r.v. X1. However, the approximation of Sp by means of Yp will be
attained in terms of a different metric.

Let X, Y be non-negative random variables with Laplace transforms lX(u),
lY (u), respectively. Let

(4.4) χ0,l(X,Y ) = sup
u≥0

|lX(u) − lY (u)|.



480 Lev B. Klebanov, Svetlozar T. Rachev

In contrast with the metric (4.2), convergence in metric χ0,l is equivalent to the weak
convergence of distributions of r.v.’s, in the class X+ of all non-negative random vari-
ables.

Note that if Sp is the sum of a random number νp of iid r.v.’s from X+ with
Laplace transforms l(u), then it is easy to see that the Laplace transform of a ν-

accompanying r.v. Yp is equal to Ψp(u; l) = ϕ

(
1

p
[1 − l(u)]

)
.

Theorem 5. Let X1,X2, . . . be a sequence of iid r.v.’s, X1 ∈ X+. Suppose

that Sp =
νp∑

j=1
Xj and Yp is a ν-accompanying r.v. for Sp. Then

sup
X1∈X+

X0,l(Sp, Yp) → 0 as p → 0, p ∈ ∆.

The proof is completely analogous to the proof of Theorem 4 and is, therefore,
not provided.

Corollary 4. Let (Xn,p)n∈N be a sequence of iid r.v.’s taking only two values:
1 with probability αp or 0 with probability 1−αp. Assume that αp depends only on p so

that there exist lim
p→0

αp

p
= λ 6= 0. Then the distribution of sum Sp =

νp∑
j=1

Xj,p converges

as p → 0 to a distribution with Laplace transform ϕ(λ(1− e−u)), where ϕ is a standard
solution of (2.5).

Note that under the condition P{pνp < x} → A(x) as p → 0, the assertion of
Corollary 4 follows from Gnedenko’s transfer theorem [7].

5. Approximation of random sums. The problems of approximating dis-
tributions of sums of a large nonrandom number of random terms with accompanying
infinitely divisible distributions have been studied rather at length (see the bibliography
in [1].

Below we consider in detail the problem of such an approximation for the case
where the number of the terms in Sp has a geometric distribution:

(5.1) P{νp = κ} = p(1 − p)κ−1, κ ∈ N.

We consider the following metrics in the set of all real-valued r.v.’s on X :

χ0(X,Y ) — a metric defined on X by (4.2);

ρ(X,Y ) — uniform distance (or Kolmogorov distance) defined as

ρ(X,Y ) = supx |FX(x) − FY (x)|,
where FX , FY are the df’s of X, Y , respectively;

σ(X,Y ) — the total variation distance defined by
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σ(X,Y ) = supA∈A |P{X ∈ A} − P{Y ∈ A}|,
where A is the set of Borel subsets of R (for their properties, see [29], [26]).

These metrics are notable in that they are invariant under linear transformations
of random variables. Topologically, metric χ0 is strictly stronger than uniform distance
ρ and strictly weaker than the total variation distance σ.

As was noted in Example 2, the function ϕ(t) =
1

1 + t
, which is the stan-

dard solution of (2.5), corresponds to random variable (5.1). This and (4.1) im-
ply that a ν-accompanying (we call it geometrically accompanying) r.v. Yp has ch.f.

Ψp(t; f) =
1

1 − (f(t) − 1)/p
. In general, in the case under consideration (i.e. for (5.1)),

we speak of geometrically infinitely divisible, geometrically stable, and so on, variables
(or distributions).

Theorem 6. Let Sp =
νp∑

j=1
Xj , where {Xj , j ≥ 1}, be a sequence of iid

r.v.’s, and suppose that νp has distribution (5.1). Assume that Yp is a geometrically
accompanying r.v. Then

sup
X1∈X

χ0(Sp, Yp) =
p

1 − (p/2)2
, p ∈ (0, 1).

P r o o f. The ch.f. fp(t) of Sp has the form fp(t) =
pf(t)

1 − (1 − p)f(t)
, where f(t)

is the ch.f. of X1. Therefore,

χ0(Sp, Yp) ≤ p sup

{∣∣∣∣∣
(z − 2)2

1 − (1 − p)z(1 + p − z)

∣∣∣∣∣ : z ∈ C, |z| ≤ 1

}
≤ p

1 −
(p

2

)2 ,

recalling that the maximum of the modules of a function analytic in |z| ≤ 1 is attained
on |z| = 1. Thus,

(5.2) sup
X1∈X

χ0(Sp, Yp) ≤
p

1 −
(p

2

)2 .

To obtain the lower estimate of supX1∈X χ0(Sp, Yp) we consider the case of
degenerate terms Xj = 1. Then f(t) = eit, fp(t) = peit/(1 − (1 − p)eit) and the ν-

accompanying ch.f. has form Ψp(t; f) =
1

1 − eit−1
p

. Direct calculations easily lead to

χ0(Sp, Yp) =
p

1 −
(p

2

)2 . This implies that

(5.3) sup
X1∈X

χ0(Sp, Yp) ≥
p

1 −
(p

2

)2 .



482 Lev B. Klebanov, Svetlozar T. Rachev

The desired result follows from (5.2) and (5.3). �

Note that in the classical scheme of summation (i.e., νp = 1/p a.s.) a result
analogous to Theorem 6 is impossible. This follows, for example, from an investigation
of the symmetric binomial distribution (in this case Xj takes the values −1 or 1 with
probability 1/2 each).

Theorem 7. Let νp have distribution (5.1). Then

(5.4) sup
X1∈X

σ(Sp, Yp) = sup
X1∈X

ρ(Sp, Yp) =
p

1 + p
+ (1 + p)−(n0+1) − (1 − p)n0 ,

where

(5.5) n0 =

[(
ln

1 − p

1 + p

)
/ ln(1 − p2)

]
.

(Here [x] denotes the integer part of x.)

P r o o f. For any X1 ∈ X

ρ(Sp, Yp) ≤ σ(Sp, Yp)

= sup
A∈A

∣∣∣∣∣∣

∞∑

n=1

P




n∑

j=1

Xj ∈ A


 (1 − p)n−1 − (1 + p)−(n+1) − 1

p + 1

∣∣∣∣∣∣
.

It is easy to see that (1 − p)n−1 ≥ (1 + p)−(n+1) for all n ≤ n0 where n0 is defined by
(5.5) while for n ≥ n0 the inverse inequality is fulfilled. We then find

σ(Sp, Yp) ≤

p max






n0∑

n=1

(
(1 − p)n−1 − 1

(1 + p)n+1

)
,

∞∑

n=n0+1

(
1

(1 + p)n+1
− (1 − p)n−1 +

1

1 + p

)



=
p

1 + p
+

1

(1 + p)n0+1
− (1 − p)n0.

Thus, sup
X1∈X

ρ(Sp,Xp) ≤ sup
X1∈X

σ(Sp, Yp) ≤
p

1 + p
+

1

(1 + p)n0+1
− (1 − p)n0.

To see the equality, consider the degenerate case Xj ≡ 1, where we have

ρ(Sp, Yp) ≥ |P (νp ≥ n0) − P (Yp ≥ n0)| =
p

1 + p
+

1

(1 + p)n0+1
− (1 − p)n0 . �
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Corollary 5. Let (Xn,p)n∈N be a sequence of iid r.v.’s taking only two values:
1 with probability α = λp or 0 with probability 1 − α, where λ = const , and let

P (µλ = κ) =
λκ

(1 + λ)κ+1
, κ = 0, 1, . . .. Then for all p ∈ (0, 1) we have

χ0(Sp, µλ) ≤ p

1 −
(p

2

)2

and

σ(Sp, µλ) ≤ p

1 + p
+

1

(1 + p)n0+1
− (1 − p)n0 ,

where n0 is defined by (5.5).

The above corollary follows from Theorems 6 and 7 since µλ is a geometrically

accompanying variable for Sp =
νp∑

j=1
Xj,p.

Theorems 6 and 7 offer the exact estimates of approximations of sums of a geo-
metric number of r.v.’s with geometrically accompanying laws. However, the question
can also be posed as to how to approximate with geometrically infinitely divisible dis-
tributions. We will show that for χ0 such an approximation cannot lead to a substantial
improvement compared to the result of Theorem 6.

Theorem 8. For the class G of all geometrically infinitely divisible r.v.’s, the
following inequality holds:

sup
X1∈X

χ0(Sp,G) ≥ p

2 − p
.

P r o o f. Theorem 2 implies that every geometrically infinitely divisible ch.f.
g(t) can be represented as

(5.6) g(t) = lim
m→∞

1

1 − αm(gm(t) − 1)
,

where {αm, m ≥ 1} is a sequence of positive numbers and {gm(t),m ≥ 1} is a sequence
of ch.f.’s. From (5.6) we can see that Re g(t) ≥ 0 for an real t. Suppose that the

ch.f.’s of X1 is f(t) = const . Then the ch.f. fp(t) of Sp =
νp∑

j=1
Xj is equal to fp(t) =

pcos t

1 − (1 − p)cos t
. We finally have χ0(Sp,G) = inf

g∈G
sup

t
|fp(t)−g(t)| ≥ inf

g∈G
|fp(π)−g(π)| ≥

p

2 − p
. �

6. Random sums of random vectors. We now turn to the study of the
multivariate case. Let (Xn)n∈N be a sequence of iid random vectors in Rs. We consider



484 Lev B. Klebanov, Svetlozar T. Rachev

the same families {νp, p ∈ ∆} as before. Of course, it is assumed that semigroup P

is commutative. Virtually all the results set forth above are also valid (with obvious
changes) in this case. This follows from the Cramér-Wold Device for Theorems 1–5,
while for the remaining theorems the arguments given in their proofs remain in force.
Let us note only certain changes:

(i) The ch.f. of a ν-strictly Gaussian s-variate distribution has the form

(6.1) f(t) = ϕ((At, t)),

where A is a symmetric, positive definite matrix, and ϕ is a standard solution of (2.5).

(ii) Let ϕ be a standard solution of (2.5). A ch.f. g(t) is a ν-infinitely divisible
ch.f. of an s-dimensional r.v. if and only if

(6.2) g(t) = ϕ(− log f(t)), t ∈ Rs,

where f(t) is an infinitely divisible ch.f.

(iii) Let (Xn)n∈N be a sequence of iid s-dimensional r.v.’s with ch.f. f(t). As-

sume that ϕ is a standard solution of (2.5). Let Sp =
νp∑

j=1
Xj .

An s-dimensional r.v. Yp with ch.f.

Ψp(t; f) = ϕ

(
1

p
(1 − f(t))

)

is called an accompanying ν-infinitely divisible s-dimensional random vector for Sp.
For the sake of brevity we will speak of ν-accompanying random vectors.

Note that the assertions of Theorems 6 and 7 are generally independent of
dimension s.

7. Domains of attraction of multivariate geometrically stable laws.

Let νp (p ∈ (0, 1)) be a geometric r.v. (5.1), and let (Xn)n∈N be a sequence of iid
s-dimensional r.v.’s independent of νp. If for some constants bp ∈ Rs and non-singular
s × s matrices Ap the d.f.’s of sums

(7.1) S̃p = A−1
p

νp∑

j=1

(Xj − bp)

weakly converge, as p → 0, to some s-dimensional d.f. V , then we say that the d.f. of
vector X1 is weakly geometrically attracted to V . The collection of all d.f.’s weakly
geometrically attracted to V is called the domain of geometric attraction of V and is
denoted by regg(V ).



Sums of a random number of random variables . . . 485

Below we establish the relationship between domains of geometric attraction
and domains of attraction in the classical sense (denoted by reg V ).

Theorem 9. The domain of geometric attraction of a law V with ch.f h(t),
t ∈ Rs coincides with the (classical) domain of attraction of Ṽ with ch.f.

(7.2) h̃ = exp{1 − 1/h(t)}, t ∈ Rs.

P r o o f. Let X1 be weakly geometrically attracted to V . This means that
ch.f. fp(t) (t ∈ Rs) of (7.1) converges to h(t), as p → 0. Theorem 6 implies that
χ0(S̃p, Ỹp) → 0, as p → 0, where Ỹp is a random vector with ch.f.

Ψp(t; f) =
1

1 − ei(bp,Apt)f(Apt) − 1

p

,

which tends to h(t), as p → 0. Choosing p = 1/n , n ∈ N, we see that

n
(
ei(b1/n,A1/nt)f(A1/nt) − 1

)
→ 1 − 1

h(t)
as n → ∞.

This clearly implies that the normalized sum A−1
1/n

n∑
j=1

(Xj − b1/n) converges to a dis-

tribution with ch.f. (7.2) when n → ∞. Thus, X1 is weakly attracted to Ṽ and,
consequently, regg(V ) ⊂ reg(Ṽ ).

Repeating the argument in reverse order, we obtain the inverse inclusion reg(V ) ⊃
regg(Ṽ ). �

8. Bounds for random sums. As we have seen in Section 7, the key to
proving Theorem 9 is Theorem 6. Therefore, to study domains of ν-attraction we must

investigate the possibility of generalizing Theorem 6 to sums Sp =
νp∑

j=1
Xj , where νp

does not necessarily have geometric distribution (5.1).

As has been noted above, if νp = 1/p, p ∈ {1/n : n ∈ N}, then supX1∈X χ0(Sp, Yp)
does not tend to zero as p → 0. Therefore, nontrivial estimates of

(8.1) δp = sup
X1∈X

χ0(Sp, Yp)

are far from possible for all families {νp, p ∈ ∆} with commutative P. Below we
calculate the estimate of δp and establish the conditions under which δp → 0 as p → 0.
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Theorem 10. Let lp(t) be the ch.f. of a r.v. νp and ϕ(z) a standard solution
of (2.5). Then (8.1) can be calculated in the following way:

(8.2) δp = sup
0≤θ<2π

∣∣∣∣lp(θ) − ϕ

(
1

p
[1 − eiθ]

)∣∣∣∣ .

P r o o f. If (Xn)n∈N is a sequence of iid r.v.’s (or vectors) independent of νp and

with ch.f. f(t), then Pp(f(t)) is the ch.f. of Sp =
νp∑

j=1
Xj . The ν-accompanying variable

Yp has ch.f. ϕ

(
1

p
(1 − f(t))

)
. Since for real t we have |f(t)| ≤ 1, Pp(z) is analytic in

|z| < 1, and ϕ(u) is analytic in the half-plane Reu > 0, then

(8.3) χ0(Sp, Yp)≤ sup
z∈C,|z|≤1

∣∣∣∣Pp(z)−ϕ

(
1

p
(1 − z)

)∣∣∣∣= sup
θ∈[0,2π)

∣∣∣∣Pp(e
iθ)−ϕ

(
1

p
(1 − eiθ)

)∣∣∣∣ .

We have used the fact that the maximum of the modules of a function analytic
in a domain is attained on its boundary. However, Pp(e

iθ) = lp(θ). In addition, it

is clear that

∣∣∣∣Pp(e
iθ) − ϕ

(
1

p
(1 − eiθ)

)∣∣∣∣ is equal to χ0(Sp, Yp), when the Xj ’s have a

degenerate distribution concentrated at 1. Consequently, an equality is attained in
(8.3) and (8.3) coincides with (8.2). �

Theorem 6 shows that in the case of the geometric variable νp (c.f. (5.1)) δp =
p

1 −
(p

2

)2 is fulfilled.

Let us now give an estimate for δp for the r.v. νp from Example 1. Recall that
in this case νp = 1/p, p ∈ {1/n, n ∈ N} and

δ1/n = sup
θ∈[0,2π)

|einθ − exp{−n(1 − eiθ)}| ≥ 1 − e−2n,

and equality is attained for even n. Thus, δ1/n → 1 6= 0 as n → ∞.

Unfortunately, we do not know the necessary and sufficient conditions for δp → 0
(cf. (8.2)) as p → 0. However, we can separately give the necessary or the sufficient
conditions for such convergence.

Let us assume that

(A) A(x) = lim
p→0

P{pνp < x} is absolutely continuous for x > 0;

(B)
1

p

∞∑

κ=1

|P{νp = κ} − P{νp = κ + 1}| ≤ C for all p ∈ ∆, where C > 0 is a

constant.
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Theorem 11. Under conditions (A) and (B)

(8.4) lim
p→0

δp = 0.

is fulfilled for (8.2).

P r o o f. Choose ε > 0. Since A(x) is absolutely continuous (see condition (A)),

we have lim
t→∞

∞∫
0

eitxdA(x) = 0. Therefore there exists a v0 > 0 such that

∣∣∣∣∣
∞∫
0

eitxdA(x)

∣∣∣∣∣ <

ε for all t ≥ v0.

Consider the difference lp(θ) − ϕ

(
1

p
(1 − eiθ)

)
for θ ∈ [0, v0p]. Let θ = vp,

v ∈ [0, v0]. We have: lp(vp) = E exp(iv(pνp)) is the ch.f. of pνp, therefore lp(νp) →
∞∫
0

eivxdA(x) as p → 0, moreover, the convergence is uniform with respect to ν ∈ [0, v0].

On the other hand, lim
p→0

1 − eivp

p
= −iv and, consequently, lim

p→0
ϕ =

(
1 − eivp

p

)
=

ϕ(−iv). Summarizing,

(8.5) lim
p→0

(
lp(vp) − ϕ

(
1 − eivp

p

))
= 0

uniformly on v ∈ [0, v0]. The case θ ∈ [2π − v0p, 2π) is considered in exactly the same
way.

Without loss of generality, we can assume that 2C/v0 < ε, where C is a constant
from condition (B).

Suppose now that θ ∈ [v0p, 2π − v0p]. Consider first lp(θ). Denoting Bm =
m∑

κ=1
eiθκ and applying the Abel transform, we find lp(θ) =

∞∑
κ=1

P{νp = κ}eiθκ =

−
∞∑

κ=1
(P{νp = κ + 1} − P{νp = κ})Bκ. However, Bm =

m∑
κ=1

eiθκ = eiθ (1 − eiθm)

(1 − eiθ)
.

Therefore, |Bκ| ≤ 1

|sin
(

θ
2

)
|
, k ∈ N. From this and condition (B) we find that

|lp(θ)| ≤ C
p

|sin
(

θ
2

)
|
. This way we have for θ ∈ [v0p, 2π − v0p]

(8.6) |lp(θ)| ≤ 2C

v0
≤ ε.

For the same values of θ

(8.7)

∣∣∣∣∣

∫ ∞

0
e

ix(sin θ)
p dA(x)

∣∣∣∣∣ ≤ ε,
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since
|sin θ|

p
≥ v0. The desired now follows from (8.5), (8.6) and (8.7). �

Corollary 6. Suppose that for all ∈ ∆ and κ ∈ N we have P{νp = κ} ≥
P{νp = κ + 1}. If A(x) from condition (A) has density bounded in some neighborhood
of the point x = 0, then (8.4) is true.

The necessary conditions (8.4) are given by the following assertion.

Theorem 12. Let the family {νp, p ∈ ∆} be such that for some n ≥ 1 and
r ≥ 2 independent of p

(8.8)
n∑

κ=1

P{νp = κ} +
∞∑

κ=1

P{νp = n + κr} = 1

for all p ∈ ∆, is fulfilled. Then (8.4) does not hold.

P r o o f. Denote aκ(p) = P{νp = κ}, κ ∈ N. We have Pp(e
iθ) =

n∑
κ=1

aκ(p) exp(iθκ)

+
∞∑

κ=1
aκr+n(p) exp(iθ(κr + n)). Letting here θ = 2π/r, we find

Pp

(
exp

(
i2π

r

))
= exp

(
i2πn

r

)
+

n−1∑

κ=1

aκ(p)

(
exp

(
i2πκ

r

)
− exp

(
i2πn

r

))
.

Since aκ(p) → 0 as p → 0 because pνp has a proper limiting distribution, then

(8.9) Pp

(
exp

(
i2π

r

))
→ exp

(
2πin

r

)
, as p → 0.

However, as p → 0

(8.10) ϕ




1 − exp
(

2πi
r

)

p


→ 0,

since Re

(
1 − exp

(
2πi

r

))
> 0 and ϕ(z) is the Laplace transform of A(x). From a

comparison of (8.9) and (8.10), we see that, as p → 0,

δp ≥

∣∣∣∣∣∣
Pp

(
exp

(
2πi

r

))
− ϕ




1 − exp
(

2πi
r

)

p




∣∣∣∣∣∣
→ 1,

which implies the desired. �

Example 4. Suppose that for every m ∈ N, {νp,m : p ∈ (0, 1)} is a family of
r.v.’s such that

P{νp,m = 1} = p1/m,
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(8.11) P{νp,m = 1 + κm} =




κ−1∏

j=0

(
1

m
+ j

)
 p1/m (1 − p)κ

κ!
, κ ∈ N.

It is easy to see that Eνp,m =
1

p
, Pp,m(z) = p1/m z

(1 − (1 − p)zm)1/m
. In this case the

standard solution of (2.5) has the form, ϕm(t) = (1 + mt)−1/m, and P is commutative.
Theorem 12 implies that for m > 1 relation (8.4) does not hold. For m = 1 Theorem
6 is applicable.

For an even m the r.v. νp,m with distribution (8.11) is an example of a case
where we may not be able at all to approximate the distributions of sums Sp with
ν-infinitely divisible distributions in metric χ0. Indeed, let Gν be the class of all ν-
infinitely divisible r.v.’s. Then

sup
X1∈X

χ0(Sp,Gν) ≥ 1.

Suppose that X1 has ch.f. cos t. Then the ch.f. of Sp is

fp,m(t) =
p1/mcos t

(1 − (1 − p)cos mt)1/m
.

Clearly, fp,m(π) = −1. On the other hand, any ν-infinitely divisible ch.f. has form
g(t) = lim

κ→∞
(1 + m(ακ(1 − gκ(t)))−1/m, where αk > 0 and gκ(t) is a ch.f. It is easy to

see that Reg(t) ≥ 0. Therefore, if U has ch.f. g(t), then

inf
g∈G

sup
X1∈X

χ0(Sp, U) ≥ |fp,m(π) − g(π)| ≥ 1.

We have thus shown the desired estimate.

9. The domain of attraction for ν-stable random vectors. We can now
obtain an analog of the result of Section 7 for generic “ν-sums”.

Let {νp, p ∈ ∆} be a family of r.v.’s taking natural values and such that P is
commutative. Assume that (Xn)n∈N is a sequence of iid s-dimensional r.v.’s indepen-
dent of νp. If for some choice of bp ∈ Rs and non-singular s × s matrices Ap the d.f.’s

of sums S̃p = A−1
p

p∑
j=1

(Xj − bp) weakly converges as p → 0 to some d.f. V , then we say

that the d.f. of X1 is weakly ν-attracted to V . The collection of all the d.f.’s weakly
ν-attracted to V is called the domain of ν-attraction of V .

Theorem 13. Let (8.4) be fulfilled. Then the domain of ν-attraction of law
V with ch.f. h(t), t ∈ Rs coincides with the (classic) domain of attraction of law Ṽν

with ch.f. h̃ν = exp{−ϕ−1(h(t))}, where ϕ is a standard solution of (2.5).
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The proof of this is analogous to the proof of Theorem 9 and is therefore omitted.
In the sequel we assume that A(x) = lim

p→0
P{pνp ≤ x} , cf. condition (A)

in Theorem 11. Let aκ(p) = P{νp = κ}, κ ∈ N and bκ(p) =
1

κ!pκ

∞∫
0

xκe−x/pdA(x),

κ = 0, 1, . . .. As before, Sp =
νp∑

j=1
Xj and Yp is a ν-accompanying r.v. for Sp.

Theorem 14. Assume that aκ(p) and bκ(p) are such that for any p ∈ ∆ there
exists a natural number n0 = n0(p) such that

(9.1) aκ(p) − bκ(p) ≥ 0, κ = 1, . . . , n0.

Let

(9.2) Kp = {κ : κ ≥ 1, aκ(p) − bκ(p) ≥ 0}.

Then

(9.3)
n0∑

κ=1

(aκ(p) − bκ(p)) ≥ sup
X1∈X

σ(Sp, Yp) ≤
∑

κ∈Kp

(aκ(p) − bκ(p)).

P r o o f. We have

ϕ

(
1 − z

p

)
=

∫ ∞

0
exp

(
−(1 − z)x

p

)
dA(x) =

∞∑

κ=0

bκ(p)zκ.

Therefore, ϕ

(
1 − f(t)

p

) ∞∑
κ=0

bκ(p)fκ(t). This representation implies that for any

X1 ∈ X

ρ(Sp, Yp) ≤ σ(Sp, Yp) = sup
A∈A

∣∣∣∣∣∣

∞∑

n=1

P





n∑

j=1

Xj ∈ A



 (an(p) − bn(p)) − b0(p)

∣∣∣∣∣∣
.

Taking into account (9.2) and the inequality P (A) ≥ 1, we find that

(9.4) σ(Sp, Yp) = max



∑

κ∈Kp

(aκ(p) − bκ(p)), b0(p) +
∑

κ/∈Kp

(bκ(p) − aκ(p))


 .

However,
∞∑

n=1
aκ(p) =

∞∑
n=1

bκ(p) = 1. Therefore, b0(p)+
∑

κ/∈Kp

(bκ(p)−aκ(p)) =
∑

κ∈Kp

(aκ(p)−

bκ(p)), and from (9.4) we find sup
X1∈X

σ(Sp, Yp) ≤ ∑
κ∈Kp

(aκ(p) − bκ(p)). This proves the

upper bound in (9.3) and it now remains to prove the lower bound.
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Let us consider the degenerate r.v.’s Xj ≡ 1. For these variables

ρ(Sp, Yp) = sup
x∈R

|P{νp ≤ x} − P{1 ≤ Yp ≤ x}| ≥
n0∑

κ=1

(aκ(p) − bκ(p)),

producing the lower bound in (9.3) and concluding the proof. �

Corollary 7. Assume that Kp = {1, 2, . . . , n0} or, in other words, aκ(p) −
bκ(p) ≥ 0 for 1 ≤ κ ≤ n0 and aκ(p) − bκ(p) < 0 for κ > n0. Then

(9.5) sup
X1∈X

ρ(Sp, Yp) = sup
X1∈X

σ(Sp, Yp) =
n0∑

κ=1

(aκ(p) − bκ(p)).

Example 5. Let νp = 1/p = n with probability 1. In this case A(u) is the
function of a degenerate distribution concentrated at u = 1. Of course,

bκ(p) = bκ

(
1

n

)
=

nκe−n

κ!
.

Clearly, aκ(p) = aκ(1/n) = 0 for κ 6= n and aκ(1/n) = 1 for κ = n. Therefore

we find from Theorem 14 e−n
n∑

κ=1

nκ

κ!
≤ sup

X1∈X
ρ(S1/n, Y1/n) ≤ sup

X1∈X
σ(S1/n, Y1/n) ≤

1 − e−n nn

n!
. If n → ∞ then it is easy to verify that

1

2
≤ lim

n→∞
sup

X1∈X
ρ(S1/n, Y1/n) ≤ lim

n→∞
sup

X1∈X
ρ(S1/n, Y1/n) ≤ 1.

Thus, ρ(S1/n, Y1/n) and σ(S1/n, Y1/n) do not tend to zero as n → ∞2 .

Example 6. Suppose now that νp is a geometric r.v. distribution (5.1). In

this case A(u) = 1 − e−u (u ≥ 0) . It is easy to calculate that bκ(p) =
p

(1 + p)κ+1
,

κ = 0, 1, . . . , and (5.1) implies that aκ(p) = p(1 − p)κ−1, κ ∈ N. Clearly we are under
the hypotheses of Corollary 7. The verification of this is, in essence, the content of
Theorem 7 which leads to (5.4) and (5.5) coinciding with (9.5).

Corollary 8. Assume that the hypotheses of Theorem 14 are fulfilled and

lim
p→0

∑

κ∈Kp

(aκ(p) − bκ(p)) = 0.

2 The difference between the result of Example 5 and Theorem 3.2 from Arak and Zaitsev’s book [1]
is explained by the difference in the definition of accompanying law. Arak and Zaitsev use centralization
and normalization while we do not. Regarding this, see the footnote following Definition 4.
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Then the domain of ν-attraction of V with h(t) coincides with the classic domain of
attraction Ṽν with

h̃(t) = exp{−ϕ−1(h(t))},
where, as before, ϕ is the standard solution of (2.5).

10. Rate of convergence. Let X be an s-dimensional r.v. with a non-singular
distribution F (i.e., F is not concentrated on any proper subspace of Rs).

Assume that r > 0 and consider B(r) = {x : x ∈ Rs, ‖x‖ < r}. It is known that
F is uniquely determined from the probabilities that X occurs in the various shifted
balls By(r) = B(r) − y, y ∈ Rs (see [28]). Therefore, if Y is another random vector in
Rs, then

(10.1) dr(X,Y ) = sup
y∈Rs

|P{X ∈ By(r)} − P{Y ∈ By(r)}|.

is a metric in the space of d.f.’s.
Suppose that for t > 0, χ(t) =

∫

‖x‖≤1/t

d(F (x) ∗ F (−x)), where F (x) ∗ F (−x)

is the symmetrization of F . If Q0
F (r) is a spheric concentration function, that is,

Q0
F (r) = sup

u∈Rs
P{X ∈ By(r)}, then we know that (see [11])

(10.2) Q0
F ∗n(r) ≤ A(s)(sup

u≥r
u−2χ(u)−s/2 · n−s/2),

where F ∗n is an n-fold convolution of F and A(s) is a positive variable dependent on
the dimension of the space (i.e., only on s).

Theorem 15. Suppose that A(x) = lim
p→0

P{pνp < x}, aκ(p), bκ(p) are defined

as in Theorem 14 and Kp by (9.2). Assume that (Xn)n∈N is a sequence of iid
s-dimensional r.v.’s with non-singular distributions. Then

dr(Sp, Yp) ≤ A(s)(sup
u≥r

u−2χ(u))−s/2×

(10.3) ×max




∑

κ∈Kp

(aκ(p) − bκ(p))κ−s/2,
∑

κ/∈Kp

(bκ(p) − aκ(p))κ−s/2 + b0(p)



 ,

where Sp =
νp∑

j=1
Xj and Yp is a ν-accompanying r.v.

P r o o f. As in Theorem 14, we can write

dr(Sp, Yp) = sup
y∈Rs

|P{Sp ∈ By(r)} − P{Yp ∈ By(r)}| ≤
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≤ sup
y∈Rs

max





∑

κ∈Kp

(aκ(p) − bκ(p))P






κ∑

j=1

Xj ∈ By(r)




 ,

(10.4)
∑

κ/∈Kp

(bκ(p) − aκ(p))P





κ∑

j=1

Xj ∈ By(r)



+ b0(p)



 .

However (10.2) implies that

P






κ∑

j=1

Xj ∈ By(r)




 ≤ A(s)(sup
u≥r

u−2χ(u))−s/2n−s/2.

After substituting the last estimate into (10.4) we arrive at (10.3). �

Corollary 9. If in the hypotheses of Theorem 15 s > 2, then

dr(Sp, Yp) ≤ A(s)(sup
u≥r

u−2χ(y))−s/2
∞∑

κ=1

κ−s/2 max
κ

|aκ(p) − bκ(; p)|.

Example 7. Let νp be the degenerate r.v. νp = 1/p = n a.s., p ∈ {1/n : n ∈
N}. As in Example 6 we have bκ(p) =

nκe−n

κ!
, aκ(p) = 0 for k 6= n and an(1/n) = 1.

Theorem 15 implies that

dr(Sp, Yp) ≤ max





(
1 − nn

n!
e−n

)
n−s/2, e−n +

∑

κ 6=n

nκ

κ!
e−nκ−s/2



 .

A(s)(sup
u≥r

u−2χ(u))−s/2.

Of course the last inequality can be made cruder into the form

(10.5) dr(Sp, Yp) ≤
( ∞∑

κ=1

1

κs/2
· nκ

κ!
e−n + e−n

)
A(s)(sup

u≥r
u−2χ(u))−s/2.

Since

e−n
∞∑

κ=1

1

κs/2
· nκ

κ!
≤
( ∞∑

κ=1

1

κs
· nκ

κ!
e−n

)1/2

≤ C

ns/2
,

where C is an absolute constant. Thus, (10.5) implies

(10.6) dr(Sp, Yp) ≤ A(s)(sup
u≥r

u−2χ(u))−s/2Cn−s/2.
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Note that (10.6) is remarkable in that the rate of convergence of distributions S1/n and
Y1/n grows as dimension s of random vector X1 increases.
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