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ABSTRACT. A Schoenberg conjecture connecting quadratic mean radii of a poly-
nomial and its derivative is verified for some kinds of polynomials, including fourth
degree ones.

1. Introduction. Let P,(z2) = 2" +a22" 2+ +ay, (n > 2) be a polynomial

n
with real or complex coefficients and with a1 = 0. If P,(2) = [[(z — 2;), then a; =0
1

implies that z; + 22 + - -+ + 2z, = 0. Following Schoenberg [1], we define the quadratic
mean radius of P, by

Lo 1/2
(1.1) R(P,) = (5 > \zﬂ?) .
1

Recently Schoenberg compared the quadratic mean radii of P, and P, and stated the
following

Conjecture. The quadratic mean radii R(P,) and R(P)) satisfy the inequality

n—2
n—1

(1.2) R(F,) < R(Fy),
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with equality sign if and only if all the zeros z; of Pn(z) are on a straight line, as a
partial case, all zeros z; are real.

Schoenberg proved the conjecture when n = 3 and also for polynomials of the
form

(1.3a) 2" 4 apz" Tk
which he calls “binomial” polynomials.

Schoenberg’s proof of the conjecture when P, (z) has three simple zeros is very
elegant and instructive. The object of this note is two-fold: We first prove the conjecture
when

3
(1.3) Hz—zj ™ my+mo+mg=n
7j=1

3
and ) mjz; = 0.
1
The elegant method of Schoenberg’s proof does not seem to extend to polyno-

mials of degree > 3. So our second objective is to prove the conjecture for biquadratic
polynomials and to verify it in some other cases.

2. Proof of Schoenberg’s Conjecture when P(z) is given by (1.3). If
P,(z) is given by (1.3), and if n = mj + ma + ms, let wy, wy be the zeros of

"(z 5. my
1

It is easily seen that wy, we are the zeros of the quadratic polynomial
(2.2) nw? — n(z1 + 2o + 23)w + My 2023 + Maz1 23 + M3z 29 = 0.
From (2.2), we have
i+ P =+ wsl + o = wal?)
= ot otz + Mz,

where

4
M(Zl, 29, 23) = (21 + 22 + 23)2 — E(mlzgzg + moz123 + m32122).
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Schoenberg’s conjecture (1.2), in this case is equivalent to

(23) F(Z17Z27Z3) > 07
where
2 2 2
Flo1,20,2) = (1 - ﬂ) P (1 - ﬂ) 2ol + (1 - ﬂ) 23
(2.4) n n n

1
iz + 2t 23 + [M (21, 22, 23) | }-

. miz1 + moz . . .
Putting z3 = _ L TR and supposing without loss of generality that msg >
mg

max(mq,mg), then after some elementary simplification, we see that

2

2m; 2m M2 oz |2
Plaams) = 33 (1= 50 )l + (1 50 |18 4 508

: ms meo
=1
(2.5) T, 2
1 mj 1
52 (1= 2 5| — 5l
7j=1
where
2 2
m dmim m dmim
Az1,22) = {(1——1) + Q}z%—l-{(l——Q) + 2}23
ms3 nms ms nms
4
9 {1 _mi+my mlzw n m1m2}Z122'
ms ms nms

We shall need the following lemma which may be of independent interest.

Lemma 1. Ifcy,c0 € C, a € R, |a| <1, then
(2.6) |3 4 5 4 2acica| < |er)? + |e2)? + 2a Reci@o.

An equality in (2.6) holds iff argc? = arg c3.

Proof. Since ¢? +c3 +2acica = (1 —|a])(c? +c3) +|al(c1 + ¢ sgn a)?, we have

e + &3 +20c1c] < (L= lal)(Jex] + |e2f?) + laller + 2 sgnaf?

= ‘01‘2 + ‘02‘2 + 2aRe ¢1¢o,

which completes the proof of the lemma. O
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We now set

9 1/2 9 1/2
4 4
(R R (R
ms3 nms ms3 nms

4
{1-mutme gy dima )y 5,
3

(2.7)

o =
C1C9

Then A(z1,22) = ¢} + ¢3 — 2acica. If we show that |a| < 1 (which we show later), then
by the above lemma, we have

|A(21, 22)| = |c1)? + |ea]? — 2a Recy@o.

Then from (2.5), we see that

2m 2m
F(z1,22,23) > (1 - Tl> 21| + <1 - TQ> |2o

2ms m? m3 2mim
1 2 11M2 _
—I-(l—— —2|zl\2—|——2|z2|2—|— 5— Rez17o
n m3 m3 m3

1 2 2
‘5{(1‘m) Al (1 2) 1=
ms ms
49 (1 _ @> (1 - @) Rezlzg}
ms ms

mi1+m mim 4dmim
|:|Cl|2—|—|62|2—2{1— ! 2— 122-1— L Q}Rezlzg]
m3 m3 nms

since on using (2.7) for |c1|? and |ez|? in the above, we see that the coefficients of |22,
|22|? and Re 21Z3 vanish, as is easy to verify.

Thus F(z1, 29, 23) > 0, which proves the conjecture. The case of equality holds
iff arg 2§ = arg 23, i.e. all three points 21, 29, 23 lie on the line {z € C : arg 2> = arg 2?}.

It only remains to show that |a| < 1, where « is given by (2.7). In order to

prove this, we set

m m dmim 2mim
a:zl——l, b::1——2, c:= ! 2, d:= 122,
ms ms nms m3
so that
ab+c—d

(a2 +o)V2(12 4 )12
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From our supposition that mg > max(mi,ms), we have a,b > 0. Also

8m1m2 2m1m2
2c = > >— =d,
nms ms3

if 3mg > my + mqy which follows from the fact that mgs > max(mq, ms). It follows that
(a® +¢)(b* + ¢) — (ab + ¢ — d)* = c¢(a — b)? + 2abd + d(2¢ — d) > 0.

This shows that |o] < 1. O

Remark 1. A simpler proof of the above can also be given on the lines of
Schoenberg’s proof using a theorem of Van der Berg [2].

Remark 2. If we suppose that
1 n
—Y 2 =b#0,
o

n
for a polynomial P,(z) = [](z — z;), then Schoenberg’s conjecture is equivalent to the
1

inequality
(2.8) F(z1,...,20) >0,
where
n—2 n n—1
(2.9) Flz1,. o) = — DI A bE =D Jwl?,
1 1
where wy’s are the zeros of P/ (z) and an equality in (2.8) holds iff all points z1,..., 2,

lie on a straight line (through b).

Remark 3. Schoenberg’s example (1.3a) can be easily extended to polynomi-
n

als P,(z) of the form 2"~ (2% —1)¢, ¢, k positive integers, n > Ck. If k > 2, > z; =0,
i

, 12 0 e\ 2
but if k=1, — > z; = —. Indeed, we have R(P,) = | — and
n 1

n n

1/2

R(P)) = l” i 1 {k <n;k‘€>2/k e 1)” |
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since P=(2F—1)=12"=%=1nzk—(n—kf)]. Tt is easy to see that R(P!) < n;R(Pn)

is equivalent to

which is true if & > 2.
For k =1 we have to show from (2.9) that

n—2 n 52 n—1
Szl 4+ = = > lwi? > 0.
no n 1

But in this case we have

-9 2 _ 2
n £+€—2—<€—1+(n “g)):o.
n n n

3. Case when P,(z) = (1 4+ 2)" —a™z", a € C, a™ # 1. If P,(2) =
(1+ 2)" —a"z" and if a = pe'®, then

, . -1
(3.1) 2z = (pel(o”r%) - 1) , (k=0,1,...,n—1)
and
n s’ —1
(3.2) wkz(amei—'f—l) L (k=0,1,...,n—2).
1 n—-1
Also — > z1 = .
n ‘g a” —1

From (2.9), we see that

_gnzl . ) .
F(z1,...,2n) = nn Z‘pez(a+%) —1‘ + [p"e — 1|72
k=0

n—2

-

k=0

. 2% -2
pnr—Llez(nn—al—i—n—q) —_ ]_‘ .
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On simplifying the above, we have

_2”'_1 Ik -1
F(z1,...,20) = z Z<p2+1—2pcos <a+i>)
noi= n

+(p*" + 1 — 2p"cos na)

(3.3)
2w _n_ na 2km -1
—Z pr—1 +1—2prn-Tcos 7 + 7
= n— n—
-2
= nn S1+ S9 + S55.
Since
1 1 2 +1
Sl = 5 , t= )
2P,§)t—cos (a—l—%T”) 2p
1 Q')
2p Q)
where .
o 2
Q) :== H (t—cos <a+ ﬁ)) ,
k=0 "
and since
1 2km
Q) = <p2—|—1—2pcos (a—l——))
® = gmll "
1 2n
= P+ 1 —2p"cosna),
(20)”( )
we have
1 [dp d [p*™+1—2p"cosna
$1= L2 E z /Q(t)
2p | dt dp (2p)"
(3.4)

n(p* —1)
(p?2 = 1)(p*™ +1—2p"cosna)’

Similarly, we can prove that

n—2 2n
—(n—1)(p* —1
(35) Sy = — Z ‘wk|2 _ - (TL )(p ) )
k=0 (pm — 1) (p2" + 1 — 2p"cos nar)
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From (3.3), (3.4) and (3.5), we see that

F(z1,22,. .., 2,)(p*™ + 1 — 2p"cosna)

_ (p*" = 1) (n—1)(p*" = 1)

=m=2)f(n)+f(1) - (n—-1)f(n—1),
where f(t) = (p*® —1)/(p**/* — 1) and f is strictly convex for ¢ > 0. Thus
F(z1,...,2,) >0
for n > 3. This completes the verification of Schoenberg’s conjecture for the polyno-

mials (14 2)" —a"2", (a" # 1).

4. Biquadratic polynomials. It is easy to see that any biquadratic polyno-
4

mial P(z) with zeros {z;}{ such that 3" 2; = 0, can be written as the product of two
1

quadratic polynomials. Indeed we have

(4.1) P(z) = (22—204,2—1-5)(22—1-2042—1—7), a,B,v €C,
so that
(42) ip/(z) — 23 o <20é2 . ﬂ ;_ ’Y> -+ Cl(ﬂQ— ’)/)

It follows from (4.1) that

(4.3)

N =

4
> 1zt =200® +]o® = Bl +|a® — 1.
j=1
If w; (j =1,2,3) denote the zeros of P'(z), and if we set
wj =uw! +ow¥, j=1,2,3 with w3=1, w#1
3

then '21 lw;|? = 3(|u|® 4 |v]?). Since w; are the zeros of P'(z), we see from (4.2) that

j=
ud 4+ vd = —%(ﬂ -)

1 6+~
= (222 - 21},
uv 3<a 5 )

(4.4)
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Schoenberg’s conjecture in this case reduces to

1 4 3
(4.5) 3 1z =) lwg? > 0.
=1 k=1

If o = 0 then (4.5) reduces to the triangle inequality |5| + |y| — |8 + v > 0. The case
a # 0 is equivalent to o = 1. Then the left side of (4.5) becomes F'(u,v) on using (4.4)
and (4.3), where

Fu,v) = 2+ |u® +v® — 14 3uv| + [u + 0> + 1 — 3uv| — 3Ju|* — 3Jv|*.

Since u? +v3 +1—3uv = (u+v+1)(u® +v> +1—uv —u —v), we may put u+v = (,
u—v =W so that

AF (u,v) =8 +[C+1[(C = 2)* 4+ 3W?| + | = 1|-|(C +2)* + 3W?| = 6]¢|* — 6|W]*.
Putting 3W? = w, we have
(4.6) G(¢ w) := 4F (u,v) = 8+ ¢ —1].|(C+2)” +w|+[C+1[/(¢ —2) +w] = 6]¢[* —2[w].
If (,weC,let (=E+1in, &, eER, w=re¥, r>0and 0 < ¢ < 27r. Then we set
pr=C—1=(E-1+n* q=|C+1=/(§+1)*+n>
If we set (¢ +2)? :=a +1ib, (( —2)? := c+ id, then
a=(§+2)* =1, b=2n(+2),

c=(§-2)% 1" d=2n(-2)

We can now see that if we set

(4.6a)

A:=(¢+27+w|, B:=[(—-2)?%+uwl,
then

A = Ja+rcosp+i(b+rsiny)|
B = |c+rcose+i(d+rsing)

and A% = a? + a3, B% = b? + b3, where

a] = —asinp +bcosyp, az=r-+acosyp+ bsinp,
b1 := —csinp +dcosp, by =71+ ccosy + dsinp.
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With the above substitution, we obtain
(4.7) G(¢,w) =8+ pA+qB — 6(£% +1n?) — 2r.

Now Schoenberg’s conjecture is G(¢,w) > 0. In order to prove it we first
consider the case of real (, i.e. n = 0. It will turn out that this is the only possibility
for G(¢,w) = 0. Using

(1+QR2-¢0*+(1-02+¢)*=8-6¢" and (1+()+(1-¢) =2

we get from (4.6)

G(Cw) = sgn(1+Q)1+¢[(2—¢)*+sgn (1 -1 —([(2+¢)?
H1+ R = O +wl+ 1= ¢2+ ) + w]
—sgn (1 4+ Q)[1 + ¢|.|w| —sgn (1 — )1 — ¢].|w]
= 1+ ¢H{I2=¢)*+w|+sgn(1+)[(2-¢)* — |wl]}
+[1 = CH{I2+¢)* +w| +sgn (1 -2+ ¢)* — |w[]} > 0.

The only cases of equality G({,w) =0 are

Il <1 and w < —(2+[¢])? or
(=1 and w< -1 or
(/>1 and —(2+¢])? <w < —(2-[¢])*

The zeros of P are 1+/T—Fand 14T — vy with1—-8=—(1—-)((2+¢)*+w)/4,
1—v=—(14+¢)((2—¢)?+w)/4. Therefore the equality G(¢,w) = 0 implies only real
zeros for P.

In the general case we fix ( € C and we want to find Jféfc G(¢,w). The infimum
can occur only at points w for which:

i) G is not differentiable with respect to w (i.e. r =0 or A =0 or B =0);

ii) Tazm, s

iii) o =5 = 0.

i) If » = 0, then from the identity

=1 +2)? = (C+1)(¢—2)° =6¢" -8,
we see that

G(¢,0) = 8—=6[C*+](¢C—D(C+2)%+](C+ )¢ —2)?
8 — 6[¢C|* +16¢% — 8| > 0.

v
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Moreover G(¢,0) = 0 iff ( = +2, which implies real zeros for P. If A=0or B =0
then w = —(¢ £+ 2)? and

8+ 8IC(C £ 1) —6[¢]” —2|¢ £2
44 8|¢(C 1) — 4¢P —4[¢ £ 1
= 4—-4(¢|-I¢£1)*>0.

G(¢,—(C£2)?)

Moreover G(¢,—(¢ 4 2)?) = 0 only on subsets of the real line which implies only real
zeros for P.
ii) If n # 0, then [ — 1| 4+ |¢ + 1| > 2 and so

lim G((,w) = +oo.

|w]—o00

iii) In the sequel, we assume n # 0 and r, A, B > 0 and solve the system of
equations

G 0G

From (4.7), we see that (4.8) is equivalent to

18—G—{£a1+gbl}:0

(4.9) r Op A B
906G _ a2 ba o
a A" 'B B

We shall prove
Lemma 2. If A2 =a2+ a3, B? =03 + b3 and

p=y(E-1)2+n% q=/((+1)2+n* A B>0, n#0,

then the system of equations (4.9) is equivalent to (4.10), (4.11), (4.12) and (4.13)
(where e = £1):

(4.10) nas =e(1 —§&aq,
(4.11) nby = —e(1 + &by,
(4.12) sgnas sgn(l—¢&) >0,
(4.13) sgnbe sgn(1+¢) > 0.
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Proof. We shall first show that (4.10) — (4.13) imply (4.9). Indeed from (4.10)
and (4.11), we get

(4.10) a} = (1- %3

(4.11) b3 = (1+€)°07

so that on adding (1 — &)%a3 (or (1 + £)2b3) to (4.10) (or to (4.11)"), we obtain
plaz=(1-£A% and ¢°b3 = (1+£)°B

and in view of (4.12) and (4.13), we have

(4.14) pag = (1—&A and gby=(14+¢)B.

From (4.14) we easily get the second condition in (4.9).
From (4.14), in view of (4.10) and (4.11), we also have

par A7 = aay'(1-€) =1)/e,

ghB™' = byt (1+ &) = —n/e

which on adding yield the first equation in (4.9).
We shall now show that (4.9) imply (4.10) — (4.13). Indeed from (4.9), we have

par A~ = —gby B7Y, pas ATt =2 — gbyB7!
(or gbyB™' =2 — pay A7),
Adding the square of the first equation to the squares of the second and third, we obtain
p*=4—4ghyB™' + ¢, ¢ =4 —dpas A™ +p°
so that
B =14 L0

(4.15)
¢ —p

pas A~ =1—

where ¢ = (¢? — p?)/4 by assumptions. These equations imply (4.12), (4.13).
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Squaring (4.15) yields
by = (14 +0M)b5 = (1+ (b +b3),

play = (1-€%+n*)a3=(1~8)>*af +d),

whence we have
by = (1+ €)%, nPa3 = (1-¢)%a3.

Equivalently, we get

{ nbz = (1 +&)bier,
(4.16)

nag = (1 —§)aes

where ¢; = £1, (j = 1,2). In order to find the relation between &1 and ez, we put a;
and b; from (4.16) in the first equation in (4.9). Then we have on using (4.15),

par A+ g B = pATlnas(1— &) teg +qB Inba(1 + &) ey
= nez+ner =0

so that £; = —&, g3 = ¢ and we get (4.12) and (4.13) from (4.9).
This completes the proof of the lemma. O

5. Proof of the conjecture for biquadratics. We shall show that

(5.0) inf G(¢,w) >0,

weC

where G(¢,w) is given by (4.7). The conditions g—G =0, r # 0 and %—G = 0, after
@ r
using Lemma 2, yield (with ¢ = £1):

(5.1) n(r+acosp+bsing) =e(1 —&)(—asing + bcos ),
(5.2) n(r+ccosp +dsing) = —e(1 + &) (—csinp + dcos ),

sgn (r + acosy + bsiny) -sgn (1 — &) > 0,
(5.3)

sgn (r + ccosp + dsinp) - sgn (1 + &) > 0.



510 K. G. Ivanov, A. Sharma

From the definitions of a, b, ¢, d in (4.6a), we have

(5.4)

G—C:8§, a+C:2(52—772+4)>
b—d=8y b+d=A4en.

Subtracting (5.2) from (5.1) and simplifying on using (5.4), we obtain after
elementary calculations

(5.5) [36%¢ + (e — 4)n* — 4e]sin @ = (4 + 2¢)&ncos p.

We now consider two cases: (i) when € =1 and (ii) when ¢ = —1.

(i) Case when e = 1.
In this case (5.5) becomes

(5.6) (362 — 31 — 4)sin ¢ = 6Encos .

If we set ®2 := (3¢2 — 3n? —4)? + (6¢0)? and 0 = £1, then ® > 0 because 1 # 0. From
(5.6), we have

o(38% —3n° — 4)
- .

(5.7) sinp = %65?7, cos p =
From (5.1) with € = 1, using the values of a, b, sin g, cos ¢ from (4.6a), (5.7) we get

(5.8) r = Sl=3(6 + 1) — 4 + 1267,

Since sgnr > 0, o is determined from (5.8). Indeed, we have

3 4 1
Lif <> and 2—n? =241 — -2 <€ <212 +24/1 — -2
(5.9) o = Bsy K g <& o 3"

—1 otherwise.

(Note that r > 0 excludes the case —3(£2 + n?)? — 4n? + 1262 = 0.) The values of 7,
sin ¢, cos ¢ given by (5.7) and (5.8) must satisfy (5.2) and (5.3).
Using (5.1), (5.7) and (5.8) some calculation yields

(5.10) 7+ acos g+ bsingp = 4(1 — £)(—36% — 3n* — 8¢ — 4)%,
which together with (5.3) implies that

(5.11) o(—3¢% —3n* — 8¢ —4) > 0.
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Similarly from (5.2), (5.7) and (5.8), we have

(5.12) 7“—i-ccosg0—i—alsing0:4(1+§)(—3§2—37]2+8§—4)g

s

and together with (5.3), we obtain
(5.13) (=362 —3n* +86—4)>0.
Now (5.11) and (5.13) are satisfied simultaneously if and only if
o=—1 and 3¢ +3n* +4>8¢

Equivalently, (5.11) and (5.13) are valid at the same time if and only if
4
either 7? > 9
oc=-1 and
From this and from (5.7), (5.8) and (5.9), we see that the solution to (5.1) — (5.3) is

r= i{3(52 +0%)% +4n? — 1267}

)
(5.14) 6 )
sinp = —%, cos p = 5(_352 + 3% 4+ 4)
for the following two cases:
(a) 7 > >
Tl 4‘

3 4 4
(b)0<772§1and§2€ [072_772_2\/1—57]2>U(2—7]2-1-2\/1—5772700).

For these cases, on using (5.1) and (5.10), we obtain

2
A2 = (r+acosg+ bsinp)? 1+7?7
= 16(36% +30° + 86 +4)*{(1 — ) + 07}/,
and similarly from (5.2) and (5.12) we get

B? =16(3¢” + 30> — 8¢ +4)*{(1 + £)* + 0}/ @7
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Hence we see on using (4.7), (5.11) and (5.13) that

(362 4+ 3n? + 8¢ + 4)
0]
2 2

— 2{3(& + 17 +4n® — 12¢°}/.

nf G(Gw) =8 + H{(1-9"+n*}

—6(¢% +1?)

Elementary calculation yields

igCG(g,w) =2 {4 — 362 32 + \/(352 +3n2 —4)2 + 48772} >0

because n # 0.

(ii) Case when e = —1.
In this case (5.5) becomes

(3¢% 4 5m% — 4)sin p = —2€ncos .

If we set W2 = (362 + 5n? — 4)2 + (2¢n)?, then ¥ > 0 and ¥ = 0 if and only if

4
£=0 and 7n?=-.

)

We shall first consider the case when W > 0. Then we have (for o = +1)

: g g 2 2

(5.15) sin p = _62677’ cosp = E(_4+3£ + 5n7).

From (5.1), (4.6a) and (5.15), we have

(5.16) r= %{5(52 +0?)? — 28¢2 — 449 + 32).

As in (i), we see that

4
-1 if 0<?72<g and

14 2
&+n - g‘ < =\/9+ 2072

(5.17) o 2 o _ 14 o 2 2.
or ggn <8 and 0<¢ <€—7] —1—5 9 + 20n4;

1 otherwise.

(Note that 7 > 0 excludes the case 5(&2 + n?)% — 28¢% — 44n® + 32 = 0.) Using (5.15)
and (5.16), we get from (5.1) with e = —1

(5.18) r+acosp+bsing =—(1— f)%{S(&Z +nh)E +20(&% +n?) — 16}
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which together with (5.3) yields
(5.19) o{26(&% + ) + 5" + ") — 4} < 0.
Similarly from (5.2), (5.15) and (5.16), we obtain
(5.20) r+ccosp +dsingp = —(1+ 5)%{—85(52 +n%) +20(62 +n*) — 16}
which in view of (5.3), yields
(5.21) o{—26(E2 + 1) + 5(E2 +7?) — 4} < 0.
Now (5.19) and (5.21) are simultaneously satisfied if and only if
(5:22)  [5(E +1P)— 4 > 2€[(€ +7?) and a(4—5(EX+ ) > 0.
From (5.1) and (5.18), we have
A? = (r+acosp+bsing)? + (—asing + beos p)?
= 16{(26+5)(& +n*) - 4 {1 - )+ }u
and similarly from (5.2) and (5.20) we get
B? = (r4ccosyp+dsing)? + (—csin g + dcos ¢)?
= 16{(-26 +5)(€ + ") = 4P{(L + &) + n*yu
Hence on using (4.7), (5.16), (5.19) and (5.21) we get

inf G(Cw) = 8+4{(L -7 +P}{4— (2 +5)(E +17)}or!

+ A+ + P HA— (26 +5)(E + 1) or !
— 6(2 +1°) — 2{56(&* +1°)* — 28¢* — ddn® + 32} T !
= 2{4 -3¢ -3n — oV}

Since
(5.23) U2 — (387 + 30> —4)* = 160> (2 +n* — 1),

we see that if €2 +n? > 1, then (5.22) implies 0 = —1 and ¥ > |3¢2 + 3n? — 4], so that
inf G(C,w) > 0. If €2 + n? < 1, then from (5.23) ¥ < 4 — 3¢2 — 32 and again we get
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inf G(¢,w) > 0. Finally if €2 + 7% = 1 then (5.22) implies o = —1, (5.23) gives ¥ = 1
and hence inf G((,w) = 4.

16
In the case ¥ = 0 we get by continuity from the case ¥ > 0 that inf G((,w) = 5

Thus, in the case ¢ = —1 we always have inf G((,w) > 0. O
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