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ABSTRACT. We give a new construction of uniformly convex norms with a power
type modulus on super-reflexive spaces based on the notion of dentability index.
Furthermore, we prove that if the Szlenk index of a Banach space is less than
or equal to w (first infinite ordinal) then there is an equivalent weak* lower semi-
continuous positively homogeneous functional on X * satisfying the uniform Kadec-
Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK*
renorming problems for LP(X) spaces and C(K) spaces for K scattered compact
space.

1. Introduction—notations. Throughout this paper, X will denote a real
Banach space, Bx its unit ball and X* its dual. We will first define the three slicing
indices associated to X that we will study in this paper.

Dentability index, §(X): Let C be a closed bounded subset of X. We call
a slice of C any set S of the form S = {x € C': z*(z) > a}, where z* belongs to X*
and « is real.

For e > 0, CL = {z € C such that any slice of C' containing x is of diameter > ¢}.
For an ordinal «, F is defined inductively by:

1991 Mathematics Subject Classification: 46B20.
Key words: renorming, Szlenk index, dentability, uniformly convex, Kadec-Klee, super-reflexive,
scattered compact, LP spaces.
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FO = By
Fet = (F2),

Fr= N Ff, if o is a limit ordinal.
[B<a
Then

inf{a: FY =0} if it exists
00 otherwise

(X, e) :{

And §(X) =supd(X,e).
e>0

Weak-Szlenk index, Sz,,(X): Let C be a closed bounded subset of X. For
e >0, ng = {z € C such that any weak neighborhood of z in C is of diameter > £}.
For an ordinal «, F5<O‘> is defined inductively by:

F = By

Flet — (i)

Y = 0 EPif ais a limit ordinal.
B<a
Then

Sa(X.c) = { inf{a: F{* = 0} if it excists
00 otherwise
And Sz, (X) = sup Sz (X, €).
e>0
Szlenk index, Sz(X): Let C be a closed bounded subset of X*. For ¢ > 0,
cll = {z* € C such that for any weak*-neighborhood V' of z*,diam(V N C) > ¢}.
We denote:
K = By.
oot (gl
Kg[a] =N Kg[m, if a is a limit ordinal.

[A<a
S2(X,e) = inf{a : Kl = @} if it exists
00 otherwise
Sz(X) =sup Sz(X,e).
e>0

In [L1] and [L2] it is shown that if §(X) is countable then X admits an equiv-
alent locally uniformly convex norm and that if Sz(X) is countable then X admits an
equivalent norm whose dual norm is locally uniformly convex. In this paper we are in-
terested in the Banach spaces for which these slicings proceed even faster, namely when

they stop before w (the first infinite ordinal). More precisely, we try to know if these
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conditions imply the existence of equivalent norms enjoying some uniform properties
of convexity.

In section 2 we notice that the renorming theorem of P. Enflo for super-reflexive
spaces ([E]) implies that the condition §(X) < w is equivalent to X super-reflexive.
Then we show how the geometrical construction introduced in [L1] provides us with a
uniformly convex norm, when §(X) < w. And we prove that the norm built this way
has a modulus of convexity bounded below by a power function. By doing so we obtain
Pisier’s renorming result ([Pi]).

In section 3, we study the links between the condition Sz(X) < w and the
existence of an equivalent norm on X whose dual norm has the uniform Kadec-Klee
property for the weak*-topology (UKK*), a property that has been essentially intro-
duced by R. Huff in [Hu]. After noticing that the existence of such a norm implies
Sz(X) < w, we prove a partial result for the general converse problem : if X is a
separable Banach space with Sz(X) < w, then there is an equivalent weak™ lower semi-
continuous positively homogeneous functional on X* with the UKK* property. Next we
show that the situation is particularly simple for LP?(X) spaces. Indeed we obtain that
if 1 < p < 400, LP([0,1], X) has an equivalent UKK norm if and only if LP(]0, 1], X)
has an equivalent norm whose dual norm is UKK* if and only if X is super-reflexive.
Then we solve this problem in the case of C(K) spaces, for K scattered compact space,
by showing that C(K') has an equivalent norm whose dual norm is UKK* if and only if
the w'" Cantor derived set K“) is empty if and only if Sz(C(K)) < w.

2. Dentability index and uniform convexity. For the definitions and for
a survey of the renorming results concerning the super-reflexive spaces, we refer the
reader to the book of R. Deville, G. Godefroy and V. Zizler ([D-G-Z]).

We shall start with the following easy fact, already mentioned in [L1]:

Proposition 2.1. §(X) < w if and only if X admits an equivalent uniformly

convex norm (or equivalently X super-reflexive).

Proof. From the existence of an equivalent uniformly convex norm, it follows

easily that for any £ > 0, §(X,¢) < w.

Let us now assume that X is not super-reflexive. Then X has the finite tree
property (see R.C. James [J1]). So there exists € > 0 such that for any n € N there
is a dyadic tree (7s)y;eo<n € Bx (where 25" denotes the set of sequences of 0 and

1 with length < n) satisfying: for any s € 25"71 ||[z3~¢ — z5~1|| > 2¢ and z5 =
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1
3 (zs~0 + z5~1). It is now easy to see that (s)seco<n—1 C F.. Indeed for s € 25771
any slice containing xs must contain either xs~g or zg~1. Therefore, this slice is of
diameter > e. Proceeding inductively we obtain that F' # (). Thus, for any n,

0 € F, because F! is convex and symmetric. Therefore 0 € F. So §(X) >w. O

We will now use the techniques developed in [L1] in order to give a new
construction of uniformly convex norms with a power type modulus on super-reflexive

spaces.

Theorem 2.2. (Pisier) Let X be a Banach space. If 6(X) < w, then X admits
an equivalent uniformly convexr norm | |. Moreover, the modulus of convewity 6| |(¢) of

this norm satisfies:

3C>0,3p>2, suchthat: V0<e<2 J ()= Ce

Proof. For any £ > 0, §(X,¢) < w. Let us denote N}, = §(X,27%) — 1, and

oo Ny 9—k

fl@) =zl + > 2_: e Py,
k=1n=1
where || || denotes the initial norm on X and d(z, F3") the distance from x to FJ,
for this norm.

Let | | be the Minkowski functional of the convex symmetric set
C={reX: f(x) <1}. Then, for all z € X : ||z|| < |z| < 2|jz||. So| |is an
equivalent norm on X.

We will first show that f is uniformly convex and evaluate its modulus of

convexity in terms of the index §(X,¢).

Lemma 2.3. For anye >0 and any x, y in X:

if f(x)=f(y) =1 and ||z —y|| > ¢, then: f(:cTer> <1

52

C320%(X,E)

Proof. Let ¢ > 0 and let z and y in X such that f(z) = f(y) = 1 and

|l —y|| > e. Let k € N such that % <27k < Z.
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Let n = Max{m > 0 : x € F”, and y € F",}. Assume for instance that = €

Fy \F;_tl Remark that, since ||z — y|| > ¢, we have that n < Nj. Finally, put
£

4Ny,
Claim. There exists [, 1 <[ < N —n, such that:
1

r+y
2

,FSil) > 7.

Proof of Claim. Suppose that for all 1 <1 < N —n:

r+y
2

(¥ 5 (e )+ dlw. 1) - a

5 ,FQ’"‘ﬂ) <7

Then we will show by induction that for all 1 <1 < Ny — n:

1
(P) 5 (@ 5 +dly, Fpih) <y

x
For [ = 1: we have x,y € ', and ||z — y|| > ¢, so % € F;j;l.

1
Thus, (x) implies that 3 (d(x,F;il) + d(y,F;il)) < 7. So (Py) is satisfied.

Assume (P)) is verified. Then there exist 2/, y" € F;jf such that
x/ _|_ y/

n+l+1
o € B,

1

§(Hx — 2| +ly = ¥|) < lv, therefore ||/ — /|| > e — 2y > % and
/ /

But m—;—y 7 —;—y <lv,sod (xT—I_y,F;_J;lJrl) <.

Then property (%) implies that:

1
5 (d Y 4 dly, P ) < (04 1)y

which concludes the inductive proof of (7).

. . 1 3
So in particular: 3 (d(:z:,FQA_fi) + d(y,FQAi’“k)) < (Ng —n)y < Npy = T Thus

1 €
there exist 2/, vy € FQJY’; such that E(Hx—m/H—l—Hy—y/H) < Z and therefore ||z’ —v/|| > 3

x/_’_yl

It follows that eF Aﬁifl, which is impossible because F. ]\,hifl is empty. O
2 p 2

End of the proof of Lemma 2.3. The functions || - | and d(-, F}",) are

1 Tty 27k ¢ g2
all convex, so: 5(f(:1:)+f(y))—f< 5 >mezw
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T+y g2
Therefore f (T) S 1— W){’%) O
Let us denote by ¢y the modulus of convexity of the function f. It is not

difficult to see that Lemma 2.3. implies that | | is uniformly convex. More precisely:
1
9 (e) = Z(Sf (%) . Then the conclusion of Theorem 2.2. will follow from the next

proposition:

Proposition 2.4. Let X be a Banach space. If §(X) < w, then there exist
C/
q>1 and C" > 0 such that: for any 0 <e <2, §(X,e) < -
€

We will first prove a similar result for the weak-Szlenk index:

Lemma 2.5. Let X be a Banach space. If Sz, (X) < w, then there exist
"

C
q>1 and C" > 0 such that: for any 0 < e <2, Sz,(X,e) < —
£

Proof. First we will show that

Ve > 0,Ve' > 0,52, (X, ee’) < Sz (X,e)S2,(X,€).
(n.Szw(X,e")) C Fg(n)
(n.Szw(X,e")) c Fém

Let z such that = ¢ an+ ). We need to show that z gé F_, ((n+1). Sz (Xoe! )>, SO we may

assume that =z € FEW Thus there is a weak-open set V contalnlng x and such that
diam(V N Fém) <e. But (EBx)éa, w(Xe)) = (), so, for every subset C of diameter < ¢,

=X = & Therefore « ¢ F., ((n+1). Sz (X.D)

ge

It is enough to prove by induction that Vn € N F_

This is clearly true for n = 0, so let us assume that F_,

Now, it follows from the submult1phcat1v1ty of the function Sz, (X, -) that there
1
exists ¢ > 1 such that Sz, (X,e) = O <—q) (this argument is classical: see for instance
5
Maurey’s argument for Pisier’s renorming result appearing in [B] and detailed in

D-G-Z)). ©

It seems to us very unlikely that the function §(X,-) is submultiplicative. But
this difficulty is overcome by the next lemma which enables us to control 6(X) by
Sz (L2 (X)).

Lemma 2.6. Let X be a Banach space, 1 < p < +o0, F' = Bx and
L = Brpe(o,1),x)- For any € >0, any ordinal o and any k in N we have the following:
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if x1,...,x belong to FZ, thenz | iz

function of { , ]Zc {)
Consequently 0(X,e) < Sz,(LP(X),e/2) and 6(X) < Sz, (LP(X)).

L € LE/2 (where ]l[ L is the indicator

Proof. We will prove this by transfinite induction.
The case a = 0 is obvious and the property stated in this lemma passes clearly
to limit ordinals.

Assume this property is true for a.

Let T1,..., 7, in F2T and let V be a weakly open subset of LP(X) containing
k
(@)
le by induction hypothesis Z z;1 SIS L! /2)

By Hahn Banach theorem, there exists l > 1 such that
7 Z Tij — Ti
j=1

£
lzi ; — i > 3 where 7y is a positive real number, small enough to insure that the ball

V1 S 7 S k‘,ﬂ(l‘i,j)l

i1 < ~vand forall 1 <j </,

C F2 verifying:

of radius v and centered at %, .'L'Z‘]l[i—l i Is included in V.
'k

k n l .
Lot On = iz Zom=t 2g=1 Tl mt i st

k

We have that ¢, AN Z ( le ]) i1 i . Therefore there exists ng > 1 such that
k k

i=1
Ong €V.
But, for all t € [0, B (1) le % 3 80 Py — le ey €
But, by induction hypothesis gf)no € Li /;

: (o) € (ot1)

Therefore, diam(V N L5/2) >3 and Z.’L‘i]l[ikl’%’[ €L, - O

i=1
Proof of Proposition 2.4. Let X be a Banach space such that 6(X) < w.
We already know, by Lemma 2.3, that X has an equivalent uniformly convex norm. So
L?(X) does too (see for instance M.M. Day’s proof [Da]). Therefore Sz, (L?(X)) < w.
1
Thus there is ¢ > 1 so that Sz, (L?*(X),e) = O(—q) ( Lemma 2.5). But, Lemma 2.6
£
1
implies that 6(X, ) < Sz (L2(X)), g). So6(X,e) =0(=). O
£
Remark. This can be seen as an alternative proof of Pisier’s result, knowing

Enflo’s theorem. Indeed we are still lacking a direct proof of the fact that X super-
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reflexive implies 6(X) < w. However, the main interest of this construction is to give
a simple and geometrical procedure for building uniformly convex norms with power

type moduli.

3. Szlenk indices and uniform Kadec-Klee Properties. In this section

we will study the following notions:

Definition 3.1. Let X be a Banach space.X has the uniform Kadec-Klee

property (denoted UKK), if for any € > 0, there exists A > 0 such that: if for any
weak-neighborhood V' of x, diam(V N Bx) > ¢, then ||z|| <1 —A.

Definition 3.2. Let X be a Banach space. X* has the uniform Kadec-Klee
property for the weak*-topology (UKK* ), if for any € > 0, there exists A > 0 such that:
if for any weak®-neighborhood V' of x*, diam(V N Bx+) > ¢, then ||z*|| <1 — A.

These definitions extend the usual ones introduced by R. Huff ([Hu)).

Clearly, if X has the property UKK, then Sz,(X) < w and if X* has the
property UKK*, then Sz(X) < w. So it is natural to ask the following questions: let X
be a Banach space satisfying Sz, (X) < w (respectively Sz(X) < w), does X have an
equivalent UKK norm (respectively an equivalent norm whose dual norm is UKK*)? If

so, can we construct this norm with a power type modulus A(e)?

3.1. The general case.

We present now the partial general result that we have obtained in this direction.

Theorem 3.3. Let X be a separable Banach space.Then Sz(X) < w if and

only if there erists a function f : X* — R weak*-lower semi-continuous (w*-lLs.c.)
verifying:

) Vet e Xt et < fa) < et

ii) YAeR  f(\x*) = |\|f(z").

iti) Ve >0, 3 A= Ag(e) > 0 so that, for any sequence (z},)n>0 in {y* € X*:
f(y*) <1} and any z* in X*: (x} < 2* and VY n#£m ek — k|| >¢) = f(z¥) <
1-—A.
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Moreover, in this case, we can construct f such that there exist p > 1 and C > 0
verifying, for any 0 < e <2, A(e) > CeP.

Proof. The “if” part is clear, so let us assume that Sz(X) < w. The first step

of our construction will be to show the following proposition:

Proposition 3.4. Let X be a separable Banach space.

If S2(X) < w, then for any € > 0, there exists h. : X* — R" such that:

) Vet e Xt Lt < hela) < [l

i1) VAeR  he(Az*) = [Ahe(z*).

iii) There exists Ai(e) > 0 such that for any x* € X*\{0} and any (x})n>0 in
X*, if ot <5 2% and Yk # K Nk =il o pen he(z*) < (1—Aq(e)) liminf he(2).

lim sup ||z, |
Moreover, there are ¢ > 1 and C' > 0 so that for all 0 < e <2, Ay(e) > C'el.

Proof. This proof is inspired by the construction made by P. Enflo in [E] in
order to renorm super-reflexive spaces. We will therefore use a similar vocabulary:

Let z* € X*\ {0}, n € R and € > 0.

we call (n,e)-partition of z* any family (z}),c,<n C X* verifying:

a) xg =" ) )
b) Vs € wS""1, Vk £ K, o = Tael
limsup |27, |

<n-—1 . wr
c) Vs e ws""" ot _ — a.

We will begin with the following lemma:

Lemma 3.5. Let e > 0 and n > Sz(X,%) = n(e). If (2%)scu<n is an

(n, e)-partition of x* then

liminfy, .. liminf;, [lzf;, 1 = 3[lz".

Proof. We may assume ||z*| = 1. Let (2}),c,<n» be an (n,e)-partition of z*
such that liminf; ...liminf; ||m2‘z1’zn)\| < 3. By extracting a subpartition, we may
assume that (2%),c,<n C 3Bx-. But since ||z*|| = 1, we may also assume that for all
s € w1 limsup |lof | > 1. So Vk # K/, [lz*_, — 2% .| > e. Thus 2* € (3Bx-)".

1
Hence ga:* € (BX*)E;]?) and therefore n < Sz(X, %) a
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1
Remark. By Lemma 2.5. there exists ¢ > 1 such that n(e) = O(—q).
€

End of proof of Proposition 3.4. Put h.(0) = 0. and for x* # 0:
liminfy, .. liminf;, [l2f;, .l
1
1+72p
k=1

6
n €N, (z5)5e,<n (n,€) — partition of 2*}, where v = —.
77

he(x*) = inf{

since z* is an (n,e)-partition of z*, we have he(z*) < ||z*||.

On the other hand, for any (n,¢)-partition of x*:

liminf;, ...liminf;, Hx?ﬁ,...,%)” 2| 1, .
1+9) — T+v9) —
k=1 k k=1 k

So point i) of Proposition 3.4. is satisfied.
It follows clearly from the definition of h. that ii) is also satisfied.
Now let z* € X*\ {0} and (z})n>0 in X* such that

27, — 2l

x, <%, 2* and Vk £ K

Tim sup [l |

sEw=

1
Let 0 < 8 < 5 and let (2%(n))gco<tn @ (kn,e)-partition of x}; such that:

liminf;, ... liminf;, ||:L‘2‘17’an)(n)\|

(1+ B)he(ay) > e ’
14 ’YZ l_2
=1

We want to show an inequality of the type h.(z*) < (1 — Aj)liminfh.(x}). So we
may assume, by taking a subsequence, that h.(z}) — liminf h.(x}). Moreover, by
Lemma 3.5, we have that for all n € N, k,, < n(e). So we can assume, by taking a new

subsequence, that there exists k < n(e) such that for all n € N, k, = k. Then we get
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o
that {z*} U U (25(n))sew<k is a (k + 1, e)-partition of x*. Therefore
n=0
liminfy, liminfy, .. liminf;, |27 o (n)]]
k-l—l

1+fyzl2

he(z*) <

1+Zg

k—l—l

1+72l2

(14 B) liminf he(z),).

Since k < n(e),

k 1 n(e)—1 1
1+7Zl—2 1+ Z B
k+1 - n(s o

From the above remark it follows that there exist ¢ > 1 and C’ > 0 such that for all
0<e<2 Ai(e) > C'el.
1
Furthermore, for all 0 < 8 < X he(z*) < (1—Aq(e))(1+ B) lim inf h.(x)), so h(z*) <
(1 = Ay(e))liminf h(xf). O
Proof of Theorem 3.3. Let us now denote f. the weak*-lower semi-

continuous regularization of h., namely
fe(z™) = sup{ infv he(y™) : Vweak™-neighborhood ofz*}
y*e

fe is w*-ls.c. and keeps clearly the properties i) and ii) of h..

fe enjoys also a property similar to iii). More precisely, we have:

Lemma 3.6. Lete > 0. For any x* € X* \ {0} and any sequence (x})n>0 in
X*:if

LWt 2y — 2|l
n

then
fe@") < (1= Ai(5)) limin fo(x).
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Proof. Since f. satisfies ii), it is enough to show that
i (¢7)nz0 C {y* € X*: foly") < 1), then fo(a®) <1 Ai(3).

So let * # 0 and (z})n>0 € {y* € X* : fe(y*) < 1} satisfying the hypotheses
of Lemma 3.6. Let V and V' two weak*-neighborhoods of z* such that V" C V (V7"
denotes the weak*-closure of V'). By taking a subsequence we may assume that for all
neN:

lap — 2™ _ €

feViandVn > 02— > —.
n ana v = limsup ||z¢| = 2

On the other hand, we have that for any n € N and any weak*-neighborhood W of z},,
there exists z* € W such that h.(z*) < 1.
We will now build by induction a sequence (z})r>0 € V' such that:

* * B * */ B
vhen, EZTN & h o) < 1and vk £ K, DR S €
limsup ||zf] = 2 limsup ||zf] = 2
Put 25 = zj.
Suppose zg, - . . , 2, constructed. Then there is a weak*-neighborhood U of x* such that:
* *
- €
vo<i<hwyer: LAYl
limsup ||z}] = 2
LWt : , [z —=nll _ €
Since x), — z*, there exists N such that V0 <¢ <k, ——— > —.
limsup ||zf] = 2
" —all e : . .
On the other hand —————— > —~. So there is a weak*-neighborhood W of z%; with
limsup ||z%] = 2

W C V' and such that

* ok * ok
vrewo<i<h: a2l g g I o2

€
—t = -,
limsup [|zZ] = 2 limsup ||zf] = 2

To conclude this induction we choose z;,; € W such that h.(z;,,) < 1.
1
To show that f.(z*) <1-— Al(%)’ we may assume that lim sup ||z} || > 7

But h.(%;) < 1 implies ||25|| < 2, thus ||2f|| < 4limsup ||z}, ||. Therefore

% — 2kl

Vk £ K >

g
limsup [|z5] ~ 8

.
Now, there are a subsequence (2}, )i>0 and 2* € X* such that 2, Ry
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So, by Proposition 3.4, ho(2*) <1 — Al(%).

But (Z};)z‘zo CV'CV™ CV. Thus z* € V and therefore infy«cv he(y*) <1 — Ay

)-
)-

This is true for any weak*-neighborhood V of 2*, so we have indeed f-(z*) < 1—A4(
g

oo | mOOI(T)

End of proof of Theorem 3.3. Put f(z 22 fpi(

f is w*-ls.c. and satisfies properties i) and ii).
Let € > 0 and (z))n>0 C {y* € X* : f(y*) < 1} such that z “", 2* and Vn #
m ||z} — x),|| > e for any n > 0, f(z)) <1, so ||z}| < 2 and therefore

g ot = el
"limsup ||z

| ™

nll

Let ig > 1 such that Z <2700 < % By Lemma 3.6:

_Z’O

i) < (1 ~aE

)) lminf fo-i (x),).

Moreover, for any i # ig, fo-i(2*) < liminf fy-i(x}), because the functions f,-i are
w*-Ls.c. .

i 27
So f(x <ZQ “liminf fooi(2f) — 270 A ( S

=1

) lim inf fo-i (2))

So

| =

1
In order to show iii), we may assume |z*| > 5 and then liminf fo—i (z) >

f(x*) < liminf f(zy) — —A1(32) 1- EA1(32)

Ag(e) > 1—A1(32) So by Proposition 3.4, there exist p > 1 and C' > 0 such
that for any 0 < e <2, Ag(e) > CeP. O

Remark. S. Prus studied in [Pr] the UKK renorming problem in the case
of reflexive Banach spaces with a Schauder basis. He proved that such a space has an
equivalent UKK norm if and only if there is a sequence of blocks of the original basis
satisfying some ¢, estimates. Building on this idea, Odell and Knaust recently solved
the renorming for spaces with a Szlenk index less than or equal to w, in the case of

reflexive spaces with a finite dimensional decomposition.

3.2. LP(X) spaces.
In this paragraph we consider the Lebesgue-Bochner space LP([0, 1], X) (de-
noted LP(X)), for 1 < p < oo. In [Pal, J.R. Partington proves that if LP(X) is reflexive
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with the UKK property, then X is uniformly convex. We give now an isomorphic ver-
sion of this result, which follows from Lemma 2.6., as it has been already partly noticed
in [D-G-K]. The result is the following:

Theorem 3.7. Let X be a Banach space and let 1 < p < co. The following
assertions are equivalent:

i) X is super-reflezive.

it) LP(X) admits an equivalent UKK norm.

iii)  Sz(IP(X)) < w.

iv) LP(X) admits an equivalent norm whose dual norm is UKK*.

v) Sz(LP(X)) <w.

Proof. i) implies ii): If X is super-reflexive, then X admits an equivalent
uniformly convex norm which induces on LP(X) an equivalent uniformly convex norm
which is therefore UKK.

ii) implies iii) is clear.
iii) implies i): Suppose Sz, (LP(X)) < w. Then, by Lemma 2.6 we have that §(X) < w.
So, by Proposition 2.1, X is super-reflexive.

i) implies iv): If X is super-reflexive, then X admits an equivalent norm whose dual
1 1

norm is uniformly convex. This norm induces on (LP(X))* = L1(X*) (where —+— = 1)
p q

a dual uniformly convex norm which is therefore UKK*.
iv) implies v) clearly.

1 1
v) implies i): let us assume that Sz(LP(X) < w, and let ¢ be such that — + - =1
p q
We may consider L9(X™*) as a closed subspace of (LP(X))*. Thus Sz,(L9(X*)) <
<

Szw((LP(X))*) < Sz(LP(X)). On the other hand, by Lemma 2.6, we have that §(X™*)
Szw(L1(X™)). So §(X*) < w and therefore X and X* are super-reflexive. [

3.3. C(K) spaces.

The C(K) spaces, for K scattered compact space, have been in the last few
years the source of many results and especially of many counterexamples in renorming
theory (see for instance the papers of R. Deville [De|, M. Talagrand [T], R. Haydon
[H1,2], R. Haydon and C.A. Rogers [H-R]). We are able to give a positive answer to
our renorming problem for this class of Banach spaces.

So, let K be a compact space. Let us recall that for a closed subset F' of K
the Cantor derived set F() of F is the set of all non isolated points of F. K@ for a
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ordinal, can then be defined inductively in the usual way.

Theorem 3.8. Let K be a compact space. The following assertions are
equivalent :
i) K@ =0.

i) Sz(C(K)) < w.

iii) C(K) admits an equivalent norm whose dual norm is UKK*.

Proof. iii) = ii) is clear and ii) = i) relies on the fact that if € K(® then
the Dirac measure 0, € (B¢ K))*)[la]. So let us prove that i) = iii). For that purpose
we will adapt to our setting Deville’s construction (in [De]) of a norm with a locally
uniformly convex dual norm on C(K) spaces with K“1) = @,

Let K be a compact space such that K@) = (. Then there exists an integer N
for which K(V) is finite. For u € (C(K))* we denote [||u]|| = 3 ek @z |u(x)|, where a,
is defined by:

if € KO\ KD then a, = %
Il - |l| is an equivalent norm on (C(K))*. The fact that ||| - ||| is a dual norm needs a
proof that can be found in [De]. Let us just point out that this is essentially due to the
fact that oy, is a decreasing function of the integer i such that z € K@ \ K(+1),

We need to show that |||-||| has the UKK* property. Solete > 0 and p € (C(K))*

such that for every weak*-neighborhood V' of y, ||| - ||| — diam(V 1 By ) > 2e (By.| is
the unit ball of ||| - ||])-
We can find a finite subset F' of K such that K(N) C F and = A+ Z ()0,
el
with [[A]| < (]| - || is the natural norm on (C(K))* and + is a positive number that we

will precise later). Since K(N) C F, we can find (A,),cr a partition of K into clopen
sets satisfying : for any = in F, A, N K0=) = {z}, where i, is the integer i such that
e KO\ K0+, Thus there is v such that |||v||| <1, |||v — ||| > € and

Ve e F Z w(y) — Z v(y)| <+ (7' > 0 to be chosen later).
Letze F,wehave S |u(y) — vy > |u(@) - v(@)| - 7.
yEA\{z}

Since for any y in A, \ {z}, ay > 2a,, we get

> ay(l@]+ @) > 20lu(z) - v(z)| -+
yeAz\{z}
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Hence,

Yo oalu@)l < DD aylv@)l = 20a|u(z) —v(@) + 2 Y0 ayluy)l.

yeAz\{z} yeAz\{z} yeAz\{z}

On the other hand |u(x)| < |v(z)| + |p(z) — v(x)|, therefore

Y aylu@)l < Yo aylv()l = aslu(@) —v(@) ++"+2 Y aylu)l.

yEA, yEA, y€A\{z}

So [[[ulll < 7l = 3 awln(z) — v(@)] + |Fly +2v (F| is the cardinality of F).
zeF
We have now two possibilities:

1) if Z ag|p(z) —v(z)| > %, then a right choice of v and 4/ will insure, by the above

zeF c
inequality, that |||u]|] <1 —-=.
4 2 2
. € 3 €
2) if Z ag|lp(x) —v(z)| < =, then Z azlp(z) —v(z)| > —. So Z azlv(z)| > — -7,
3 3 3
zeF x¢F z¢F
while Z aglp(x)] <.
¢ F
Therefore |||p|l| < |||v]|| + % - ?6 + 27, which implies again, if v was chosen small
enough, that |[|u]]| <1— 5. O

4

Remark. It is a well known phenomenon in geometry of Banach spaces that
the existence of nicely convex dual or bidual norms implies nice properties of the space,
such as being an Asplund space or reflexivity (see for instance the book of R. Deville,
G. Godefroy and V. Zizler [D-G-Z]).

The situation in similar for the property UKK*:

If X has an equivalent norm whose dual norm is UKK*, then X is an Asplund space.
Indeed, in this case, Sz(X) < w, so X has also an equivalent Fréchet-differentiable
norm, by the results in [L2], and therefore X is an Asplund space.

If X has an equivalent norm whose bidual norm is UKK*, then it is easy to prove that
X is reflexive.

However, the James space J introduced by R.C. James in [J2] satisfies the following
properties: J has an equivalent norm whose dual norm is UKK*, J* has an equivalent
norm whose dual norm is UKK* but J is not reflexive. A detailed proof of this

counterexample can be found in [L3].
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