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OPERATORS FACTORING THROUGH BANACH LATTICES

AND IDEAL NORMS

Shlomo Reisner

Communicated by L. Tzafriri

Abstract. A new, unified presentation of the ideal norms of factorization of
operators through Banach lattices and related ideal norms is given.

1. Introduction. This paper aims at presenting in a unified way two ideal
norms of operators between Banach spaces E and F .

One of these norms is the norm µp,q of factorization of a bounded linear operator
U in the form

(1.1) E F F ′′

L
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A B

where L is a Banach lattice, A is a p-convex operator, B is a q-concave operator and
jF is the canonical embedding of F into its bidual F ′′. The norm µp,q(U) is defined as
infK(p)(A)K(q)(B) over these factorizations of U .
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The other norm is the ‘p, q-G.L.-constant’ of U (G.L. stands for Gordon-Lewis),
which is the infimum γp,q(U) of the constants C such that for every q′-absolutely sum-
ming operator V (1/q+1/q′ = 1) defined on F , the adjoint operator (V U)′ is p′-integral
and satisfies

(1.2) ip′((V U)′) ≤ Cπq′(V ).

In the extreme case, p = 1, q = ∞, µ1,∞(U) is the so called G.L.-l.u.st constant
of U (l.u.st stands for ‘local unconditional structure’ [6]), and γ1,∞(U) is the G.L.
constant of U . A Banach space E is said to have G.L.-l.u.st (or to have the G.L.-
property) if µ1,∞(IE) <∞ (or γ1,∞(IE) <∞).

The ideal [Mp,q, µp,q] of operators which have a factorization (1.1) was treated
extensively in [16]. It was shown there that

(1.3) γp,q(U) ≤ µp,q(U)

that is

(1.4) [Γp,q, γp,q] ⊂ [Mp,q, µp,q]

in the terminology of the theory of operator ideals.
In the case 1 ≤ p < q ≤ ∞ inverse inclusion in (1.4) does not hold. In particular,

there exist examples (e.g. [2], [3], [4]) of spaces which have the G.L.-property but fail
l.u.st.

The case p ≥ q is completely different. In fact, Mp,p is the ideal Γp of operators
factoring through Lp. Kwapien [5] proved that this ideal is characterized by (1.2)
holding with inf C = γp(U). For p > q, both [Mp,q, µp,q] and [Γp,q, γp,q] are identical
with the ideal [Ip,q, ip,q] introduced in [8], of operators U which factor in the form

(1.5) E F F ′′

Lp(µ) Lq(µ)
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where Dg is an operator of multiplication by a function g ∈ Ls, 1/s = 1/q − 1/p. The
fact that [Ip,q, ip,q] = [Mp,q, µp,q] is proved in [16]. The equality [Ip,q, ip,q] = [Γp,q, γp,q],
that is, the fact that operators of Ip,q are characterized by ‘converting’ q′-summing
operators into operators with p′-integral adjoints, was ‘almost’ proved in [8], the detail
which was missing to prove it completely, namely the fact that [Ip,q, ip,q] is a perfect
ideal, was completed by Lapreste [9]. This fact follows also from the identity [Ip,q, ip,q] =
[Mp,q, µp,q] and the fact, proved in [16] that Mp,q is perfect.
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We bring in this paper a new presentation of the norm γp,q in the case of finite
dimensional Banach spaces. This presentation, when compared with the formula giving
the tensor norm ηp,q of [16], which on finite dimensional Banach spaces is identical with
µp,q, clarifies in a way the connection between the norms and the reason for different
behaviour between the cases p < q and p ≥ q. In fact the roots of the difference lie in
the possibility of exchanging ‘inf sup’ for ‘sup inf’ in a certain function of two variables,
basically by using Ky-Fan’s minimax theorem.

This presentation is introduced in Section 2 (Theorem 2.1) and it is applied to
derive a result on the G.L.-constant of unconditional sums of Banach spaces (Theorem
2.6.)

Terminology and notations. The notations and definitions which come from the
general theory of Banach spaces are mainly those of the books [10] and [11] which may
serve as a standard reference. Specifically, for Banach spaces E and F we denote by
L(E,F ) the space of bounded linear operators from E into F , B(E) denotes the closed
unit ball of E and S(E) its unit sphere. The dual space of E is denoted by E′. For
x ∈ E and x′ ∈ E′ the notations x′(x), 〈x, x′〉, or 〈x′, x〉 mean the same thing. The
adjoint operator of T ∈ L(E,F ) is T ′.

In contrast to the relative uniformity of notations used in the general theory
of Banach spaces, there is less uniformity of notations in the theory of operator ideals.
An extensive reference to the theory is Pietsch’s book [12] we shall mainly use nota-
tions which are used in [8] and also in [15] and [16]. This paper is in a strong way a
continuation of these last two papers.

From [15] we recall in particular the following construction: Let [A, a] and [B, b]

be normed operator ideals. The ideal
A

B
is defined by

A

B
(E,F ) = {T ∈ L(E,F ) ; ∀G,∀U ∈ B(F,G) UT ∈ A(F,G)}

a

b
(T ) = inf

G
inf

{

a(UT )

b(U)
; 0 6= U ∈ B(F,G)

}

.

The following facts, A) and B) were proved in [15] (Propositions (2.7) and (2.8)):

A) If [A, a] is a perfect ideal (which means that [A, a] = [A∗∗, a∗∗]) and b is a
semi-tensorial norm (a property satisfied, for example, by the p-absolutely summing

norms πp), then
A

B
is a perfect normed ideal.

B) Under appropriate conditions on the ideals A and B, the adjoint ideal norm
(

a

b

)∗

on operators T ∈ L(E,F ) between finite dimensional Banach spaces is given by

the formula
(

a

b

)∗

(T ) = inf
n
∑

i=1

a∗(Ui)b(Vi)
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the infimum being taken over all representations of T of the form T =
n
∑

i=1

UiVi with

Vi ∈ L(E,Gi), Ui ∈ L(Gi, F ) and Gi finite dimensional Banach spaces.

The tensor norm ηp,q was introduced in [16] it is defined for U ∈ E′ ⊗ F (that
is, U ∈ L(E,F ) a finite rank operator) by

(1.6) ηp,q(U) = inf
U=
∑n

k=1
x′

k
⊗yk

sup
‖(xi)i‖ℓp(E)≤1

‖(y′
i
)i‖ℓ

q′
(F ′)

≤1

n
∑

k=1

‖(x′k(xi))i‖ℓp
‖(y′i(yk))i‖ℓq′

here, as throughout this paper q′ is such that 1/q + 1/q′ = 1. The infimum above is
taken over all representations of U as a finite sum of elementary tensors.

It is shown in [16] (Proposition 3) that

(1.7) ηp,q(U) = infK(p)(A)K(q)(B)

the infimum being taken over all finite dimensional spaces L with a 1-unconditional
basis and factorizations of U of the form

(1.8)
E F

L

-
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K(p)(A) is the p-convexity constant of the operator A and K(q)(B) is the q-concavity
constant of B.

Another version of (1.6) will be useful in the sequel. If E and F are finite
dimensional Banach spaces and (ξi)

M
i=1, (ηi)

N
i=1 (M or N may be infinite) are sequences

in S(E) and S(F ′), whose affine spans are dense in B(E) and B(F ′) respectively, it is
not hard to check that (1.6) may be written in the form

(1.9) ηp,q(U) = inf
U=
∑n

k=1
x′

k
⊗yk

sup
‖µ‖

ℓM
p

≤1

‖ν‖
ℓN
q′

≤1

n
∑

k=1

‖(µix
′
k(ξi))i‖ℓM

p
‖(νiηi(yk))i‖ℓN

q′
.

We shall use (1.9) in the case that E and F are polyhedral spaces (by which we
mean that their unit balls are polytopes) and (ξi)

M
i=1, (ηi)

N
i=1 are the sets of extreme

points of B(E) and B(F ′). Let us see the proof in this case. Denote by ζp,q(U) the
expression on the right hand side of (1.9). Clearly ζp,q(U) ≤ ηp,q(U). In order to show
a reverse inequality, it is sufficient to show that for every sequence (xj)

∞
j=1 ∈ ℓp(E) with
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‖(xj)‖ℓp(E) ≤ 1 it is possible to find a sequence (µi)
M
i=1 of non-negative numbers, with

‖(µi)‖ℓM
p

≤ 1 such that for all x′ ∈ E′

‖(µix
′(ξi))i‖ℓM

p
≥ ‖(x′(xj))j‖ℓp

(an analogous construction will then work for F ′ and F ). For all j write xj = θjzj with
θj ≥ 0 and ‖zj‖ = 1. Then (

∑

θp
j )

1/p ≤ 1. For all 1 ≤ j ≤ M there exist non-negative
numbers αi(j), i = 1, . . . ,M such that

M
∑

i=1

αi(j) = 1 and zj =
M
∑

i=1

αi(j)ξi.

Define

µi =





∑

j

θp
jαi(j)





1/p

.

Clearly
(

M
∑

i=1

µp
i

)1/p

=





∑

j

θp
j





1/p

≤ 1.

On the other hand, for x′ ∈ E′

(

M
∑

i=1

µp
i |x

′(ξi)|
p

)1/p

=





∑

j

θp
j

(

M
∑

i=1

αi(j)|x
′(ξi)|

p

)





1/p

now
(

M
∑

i=1

αi(j)|x
′(ξi)|

p

)1/p

≥
M
∑

i=1

αi(j)|x
′(ξi)| ≥ |x′(zj)|.

Hence

(

M
∑

i=1

µp
i |x

′(ξi)|
p

)1/p

≥





∑

j

θp
j |x

′(zj)|
p





1/p

= ‖(x′(xj))j‖ℓp
.

�

2. The operator ideal Γp,q. For 1 ≤ p, q ≤ ∞ we define the operator ideal
[Γp,q, γp,q] by

[Γp,q, γp,q] =

[

I ′p′

Πq′
,
i′p′

πq′

]
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Explicitly: T ∈ Γp,q(E,F ) if and only if for every Banach space G, U ∈
Πq′(F,G) implies (UT )′ ∈ Ip′(G

′, E′). A Banach space E has the p, q-G.L.-property
if IE ∈ Γp,q.

The following hold:

a) [Γp,q, γp,q] is a perfect normed ideal.

b) [Γ1,∞, γ1,∞] = [Γ, γ] is the G.L.-ideal.

c) For p > q, [Γp,q, γp,q] = [Ip,q, ip,q]. In particular, for p > q no infinite dimensional
Banach space has the p, q-G.L.-property.

d) For p = q, [Γp,p, γp,p] = [Γp, γp] is the ideal of Lp-factorization.

e) [Mp,q, µp,q] ⊂ [Γp,q, γp,q].

f) If a Banach space E has the G.L.-property and is of cotype-q <∞ and type-p > 1
then for every q̃ > q and p̃ < p, E has the p̃, q̃-G.L.-property.

g) If E and F are finite dimensional Banach spaces and T ∈ L(E,F ) then

i) γ∗p,q(T ) = inf
n
∑

i=1

πp(U
′
i)πq′(Vi)

the infimum is taken over all representations of T as T =
n
∑

i=1

UiVi, with

Vi ∈ L(E,Gi), Ui ∈ L(Gi, F ) and Gi finite dimensional Banach spaces.

ii) γ∗p,q(T ) = inf
n
∑

i=1

‖µi‖
1/p‖νi‖

1/q′

the infimum is taken over all representations of T as T =
n
∑

i=1

Ti such that

there exist positive Radon measures µi on B(E′) and νi on B(F ) which
satisfy for all x ∈ E, y′ ∈ F ′:

|〈Tix, y
′〉| ≤

(

∫

B(E′)
|〈x, x′〉|p dµ(x′)

)1/p (
∫

B(F )
|〈y, y′〉|q

′
dν(y)

)1/q′

.

h) [Γ′
p,q, γ

′
p,q] = [Γq′,p′ , γq′,p′].

The claim a) follows from Proposition 2.7 in [15]. b) is obvious. c) is proved in
[8] and d) in [5]. e) is proved in [16]. In this paper we provide a unified presentation
of the ideals Γp,q and Mp,q using norms on tensor products. This approach yields c),
d) and e) together. f) follows from results of Pisier ([13] and [14]-cf. [15]). There
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exist examples of spaces with the G.L.-property and no l.u.st, of arbitrary cotype and
type (except, of course, 2, 2) (cf. [2], [3], [4]), hence f) shows that for all p < 2 < q,
Mp,q 6= Γp,q.

Claim g) is a consequence of the representation B) in the introduction and is
proved exactly like Proposition 3.4 in [15]. h) is a direct consequence of g).

Theorem 2.1. Let E and F be finite dimensional Banach spaces. We have
for U ∈ L(E,F ):

(2.1) γp,q(U) = sup
‖(xi)i‖ℓp(E)≤1

‖(y′
i
)i‖ℓ

q′
(F ′)≤1

inf
U=
∑n

k=1
x′

k
⊗yk

n
∑

k=1

‖(x′k(xi))i‖ℓp
‖(y′i(yk))i‖ℓq′

.

Remark. Comparing (2.1) with (1.6) we see that for finite dimensional Banach spaces
the difference between Mp,q and Γp,q is in replacing the ‘inf sup’ in Mp,q with ‘sup inf’
in Γp,q. As these ideals are perfect and therefore determined by the behaviour on finite
dimensional spaces, this confirms claim e) above.

P r o o f. γp,q(U) is the norm of U as a linear functional on [L(F,E), γ∗p,q]. There-
fore, by g) above

(2.2) γp,q(U) = sup
06=V ∈L(F,E)

sup
µ,ν

|traceUV |

‖µ‖1/p‖ν‖1/q′

where the second supremum is taken over all positive Radon measures µ on B(E) and
ν on B(F ′) which satisfy

(2.3) |〈V y, x′〉| ≤ µ(|〈x′, ·〉|p)1/pν(|〈·, y〉|q
′
)1/q′

for all y ∈ F and x′ ∈ E′.

Let (ξi) and (ηi) be sequences which are dense, respectively, in S(E) and S(F ′).
Let I and J be the isometric embeddings:

I : E′ → ℓ∞ ; I(x′) = (x′(ξi))i

J : F → ℓ∞ ; J(y) = (ηi(y))i.

Clearly, (2.2) is equivalent to

(2.4) γp,q(U) = sup
06=V ∈L(F,E)

sup
µ,ν

|traceUV |

‖µ‖ℓp
‖ν‖ℓq′
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where the second supremum is taken over all the sequences µ = (µi) ∈ ℓp and ν =
(νi) ∈ ℓq′ which satisfy

(2.5) |〈V y, x′〉| ≤

(

∑

i

|x′(ξi)µi|
p

)1/p(
∑

i

|ηi(y)νi|
q′
)1/q′

for all y ∈ F and x′ ∈ E′.

Let Dµ and Dν be the diagonal operators associated with the sequences µ and ν.
We define subspaces: Sq′ = DνJ(F ) ⊂ ℓq′ and Sp = DµI(E

′) ⊂ ℓp. The inequality (2.5)
holds for all y and x′ if and only if there exists a norm-1 operator Q : Sq′ → Qp′ = S′

p

such that

(2.6) V = (DµI : E′ → Sp)
′Q(DνJ : F → Sq′)

(compare with the proof of Lemma 3.5 in [15]).

(2.7)

ℓp′ Qp′ Sq′ ℓq′

ℓ′∞ I(E′)′ J(F ) ℓ∞

E F

- � -

- -

-

6 6

? ?

�
��� @

@@R
6

?

U

Q

I ′ J

D′
µ Dν

For given µ and ν, let M(µ, ν) be the subset of L(E,F ) consisting of opera-
tors V admitting a factorization of the form (2.6), without the restriction ‖Q‖ = 1.
Interchanging the order of suprema in (2.4) we get

(2.8) γp,q(U) = sup
‖µ‖ℓp

≤1

‖ν‖ℓ
q′

≤1

[

sup
06=V ∈M(µ,ν)

|traceUV |

‖Q‖

]

.

The expression inside the square brackets in (2.8) is clearly the norm of the
operator

Uµ,ν = (DνJ : F → Sq′)U(DµI : E′ → Sp)
′

as a functional on L(Sq′ , Qp′). This is exactly the nuclear norm ν1(Uµ,ν). Assume that
U has a representation

U =
n
∑

k=1

x′k ⊗ yk
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then

(2.9) Uµ,ν =
n
∑

k=1

(µix
′
k(ξi))i ⊗ (νiηi(yk))i

here (µix
′
k(ξi))i ∈ Sp ⊂ ℓp is taken as a functional on Qp′ , also (νiηi(yk))i ∈ Sq′ ⊂ ℓq′ .

If, on the other hand, Uµ,ν has a representation

(2.10) Uµ,ν =
n
∑

k=1

ϕk ⊗ ψk ∈ Sp ⊗ Sq′

then there exist x′k and yk so that (2.10) can be written in the form (2.9). Therefore

ν1(Uµ,ν) = inf
U=
∑n

k=1
x′

k
⊗yk

∑

k

‖(µix
′
k(ξi))i‖ℓp

‖(νiηi(yk))i‖ℓq′
.

The density of (ξi) and (ηi) in S(E) and S(F ′) completes now the proof of the
theorem. �

We notice that in the proof of Theorem 2.1. we could restrict the measures µ
and ν of (2.2) to be supported on appropriate subsets of B(E) and B(F ′) and thus get
the following version of Theorem 2.1 which is more convenient technically (notice the
analogy with (1.9)).

Proposition 2.2. Let E and F be finite dimensional Banach spaces and let
(ξi)

M
i=1 and (ηi)

N
i=1 be subsets of S(E) and S(F ′), respectively, whose affine spans are

dense in B(E) and B(F ) (M and N may be infinite). Then for U ∈ L(E,F ) we have

(2.11) γp,q(U) = sup
‖µ‖

ℓM
p

≤1

‖ν‖
ℓN
q′

≤1

inf
U=
∑n

k=1
x′

k
⊗yk

n
∑

k=1

‖(µix
′
k(xii))i‖ℓM

p
‖(νiηi(yk))i‖ℓN

q′
.

Corollary 2.3. ([16]) For all 1 ≤ p, q ≤ ∞

[Mp,q, µp,q] ⊂ [Γp,q, γp,q].

P r o o f. We always have ‘ sup inf ’ ≤ ‘ inf sup ’ �

The following Proposition 2.4 can be obtained from the results of [8], its Corol-
lary 2.5 was proved by Kwapien [5] in the case p = q. The case p > q could be proved
using the results of [8] combined with the fact that [Ip,q, ip,q] is a perfect ideal. This
last fact was first proved by Lapreste [9], it is also a consequence of [16]. Here we give
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a proof based on the possibility of interchanging ‘sup inf’ with ‘inf sup’ in (2.11) in the
case p > q and thus identifying it with (1.9).

Proposition 2.4. Let 1 ≤ q ≤ p ≤ ∞ then for all finite dimensional Banach
spaces E and F and all U ∈ L(E,F )

γp,q(U) = ηp,q(U).

Corollary 2.5. ([5], [9]) For 1 ≤ q ≤ p ≤ ∞

[Γp,q, γp,q] = [Ip,q, ip,q].

In particular ([5]), for 1 < p < ∞ a Banach space E is isomorphic to a complemented
subspace of Lp if and only if for every Banach space G, V ∈ Πp′(E,G) implies V ′ ∈
Ip′(G

′, E′).

P r o o f o f P r o p o s i t i o n 2.4. We prove the case 1 < q ≤ p < ∞. By
approximation we may suppose that the spaces E and F are polyhedral and the sets
of extreme points of B(E) and B(F ′) are (ξi)

M
i=1 and (ηi)

N
i=1, respectively.

To show that the ‘sup inf’ in (2.11) may be replaced by the ‘inf sup’ of (1.9) we
shall apply

Ky-Fan’s minimax theorem [1]. Let Γ and Λ be sets and f a real valued function on

Γ×Λ, which is convex-concave-like. Assume also that Λ is compact in some Hausdorff
topology and f(γ, ·) is upper semi-continuous on Λ for every γ ∈ Γ. Then

inf
Γ

max
Λ

f(γ, λ) = max
Λ

inf
Γ
f(γ, λ).

We recall that f is convex-concave-like on Γ × Λ if for all 0 < α < 1 we have

• For all γ1, γ2 ∈ Γ there exists γ3 ∈ Γ so that for all λ ∈ Λ

(2.12) f(γ3, λ) ≤ αf(γ1, λ) + (1 − α)f(γ2, λ)

• For all λ1, λ2 ∈ Λ there exists λ3 ∈ Λ so that for all γ ∈ Γ

(2.13) f(γ, λ3) ≥ αf(γ, λ1) + (1 − α)f(γ, λ2).

We let Λ = B(ℓMp )+×B(ℓNq′ )+, equipped with the product of the norm topologies

and we define Γ as the set of sequences ((x′k, yk)) ∈ (E′ × F )N with finite number of

non-zero elements, for which U =
∑

k∈N

x′k ⊗ yk.
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For γ = ((x′k, yk))k∈N ∈ Γ and λ = (µ, ν) ∈ Λ we define

f(γ, λ) =
∑

k

‖(µix
′
k(ξi))i‖ℓM

p
‖(νiηi(yk))i‖ℓN

q′
.

Now (1.9) and (2.11) are:

ηp,q(U) = inf
Γ

sup
Λ
f(γ, λ) ; γp,q(U) = sup

Λ
inf
Γ
f(γ, λ).

It is clear that f(γ, ·) is continuous on the compact Λ for each γ ∈ Γ, so it
remains to show that f is convex-concave-like on Γ × Λ. We first show (2.12). For
γj = ((x′j,k, yj,k))k∈N ∈ Γ , j = 1, 2 and 0 < α < 1, let

γ3 = ((z′j,k, wj,k))
j=1,2

k∈N

be defined by

z′1,k = αx′1,k , z′2,k = x′2,k

w1,k = y1,k , w2,k = (1 − α)y2,k.

Then, of course U =
∑

j,k z
′
j,k ⊗wj,k hence γ3 ∈ Γ and for every λ ∈ Λ we have:

f(γ3, λ) =
∑

j,k

‖(µiz
′
j,k(ξi))i‖ℓM

p
‖(νiηi(wj,k))i‖ℓN

q′
= αf(γ1, λ) + (1 − α)f(γ2, λ).

We turn now to (2.13). Let λ1 = (µ, ν) and λ2 = (µ̃, ν̃) be in Λ and 0 < α < 1.
We may assume that µi, νi, µ̃i, ν̃i are positive for all i. Define λ3 = (µ̂, ν̂) by

µ̂i = (αµp
i + (1 − α)µ̃p

i )
1/p

ν̂i = (ανq′

i + (1 − α)ν̃q′

i )1/q′ .

Then

‖µ̂‖ℓM
p

=

(

α
M
∑

i=1

µp
i + (1 − α)

M
∑

i=1

µ̃p
i

)1/p

≤ max(‖µ‖ℓM
p
, ‖µ̃‖ℓM

p
) ≤ 1

a similar inequality holds for ν̂, hence λ3 ∈ Γ.
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Let γ = ((x′k, yk)) ∈ Γ and denote

ak =

(

M
∑

i=1

µp
i |x

′
k(ξi)|

p

)1/p

, ãk =

(

M
∑

i=1

µ̃p
i |x

′
k(ξi)|

p

)1/p

bk =

(

N
∑

i=1

νq′

i |ηi(yk)|
q′
)1/q′

, b̃k =

(

N
∑

i=1

ν̃q′

i |ηi(yk)|
q′
)1/q′

Ak = αap
k + (1 − α)ãp

k , Bk = αbq
′

k + (1 − α)b̃q
′

k .

Then

(2.14) f(γ, λ3) =
∑

k

A
1/p
k B

1/q′

k .

As we assumed µ, µ̃, ν, ν̃ > 0 there is no loss of generality in assuming ak, ãk,
bk, b̃k > 0 for all k. We use the following simple formula:

If 0 < p, q′, r <∞ and 1/p + 1/q′ = 1/r then

(2.15) min
0<t

(

1

p
tpA+

1

q′
t−q′B

)1/r

=
1

r
A1/pB1/q′

(in our case r ≥ 1). Using (2.15) for A = Ak, B = Bk and rearranging the terms, we
get, with certain positive numbers tk:

f(γ, λ3) = r
∑

k

[

α

(

1

p
tpka

p
k +

1

q′
t−q′

k bq
′

k

)

+ (1 − α)

(

1

p
tpkã

p
k +

1

q′
t−q′

k b̃q
′

k

)]1/r

another use of (2.15) yields

(2.16) f(γ, λ3) ≥
∑

k

[α(akbk)
r + (1 − α)(ãk b̃k)

r]1/r ≥
∑

k

[αakbk + (1 − α)ãk b̃k]

the last inequality holds since r ≥ 1. Hence

f(γ, λ3) ≥ αf(γ, λ1) + (1 − α)f(γ, λ2)

which completes the proof. �

There exist examples of Banach spaces E which admit unconditional decompo-
sition

(2.17) E =
∞
∑

n=1

⊕En
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such that the G.L. constants of En are bounded (even this: all En are isometric to
ℓ2) but E fails to have the G.L. property (such are, for example, spaces of ‘triangular’
compact operators on a separable Hilbert space – cf. [10] p.51).

The following application of Theorem 2.1 shows that if the / decomposition
(2.17) is unconditional in a stronger sense, then such examples do not exist.

Theorem 2.6. Let X be a Banach space with an unconditional basis (en)∞n=1,
which is p-convex and q-concave as a Banach lattice. Let {En}

∞
n=1 be a sequence of

Banach spaces which satisfy: supn γp,q(IEn) = K <∞ and

E =
∞
∑

n=1

⊕XEn

(that is, for x =
∞
∑

n=1

xn ∈ E, xn ∈ En, ‖x‖ = ‖
∞
∑

n=1

‖xn‖Enen‖X ).

Then E is a p, q-G.L.-space and

γp,q(IE) ≤ KK(p)(X)K(q)(X).

In particular, a direct sum in the sense of an unconditional basis of Banach
spaces with bounded G.L.-constants, is a G.L.-space.

P r o o f. Using perfectness of [Γp,q, γp,q] we may assume that X and all En are
finite dimensional. In view of Theorem 2.1 we have to show that given (xi) ∈ B(ℓp(E))
and (y′i) ∈ B(ℓq′(E

′)) we have, for every ε > 0, a representation

(2.18) IE =
∑

j

x′j ⊗ yj

such that
∑

j

‖(x′j(xi))i‖ℓp
‖(y′i(yj))i‖ℓq′

≤ (1 + ε)KK(p)(X)K(q)(X).

For all i, xi and y′i have decompositions

xi =
∑

n

xi,n , xi,n ∈ En ; y′i =
∑

n

y′i,n , y
′
i,n ∈ E′

n.

By the assumption γp,q(IEn) ≤ K and by Theorem 2.1 we have representations

IEn =

m(n)
∑

k=1

x′k,n ⊗ yk,n , x′k,n ∈ E′
n , yk,n ∈ En
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satisfying

m(n)
∑

k=1

‖(x′k,n(xi,n)i‖ℓp
‖(y′i,n(yk,n))i‖ℓq′

≤ (1 + ε)K‖(xi,n)i‖ℓp(En)‖(y
′
i,n)i‖ℓq′ (E

′
n).

We claim that the representation

IE =
∑

k,n

x′k,n ⊗ yk,n

is a good representation to substitute in (2.18). In fact

∑

k,n

‖(x′k,n(xi))i‖ℓp
‖(y′i(yk,n))i‖ℓq′

=
∑

k,n

‖(x′k,n(xi,n)i‖ℓp
‖(y′i,n(yk,n))i‖ℓq′

≤

(1 + ε)K
∑

n

‖(xi,n)i‖ℓp(En)‖(y
′
i,n)i‖ℓq′ (E

′
n) ≤

(1 + ε)K

∥

∥

∥

∥

∥

∑

n

‖(xi,n)i‖ℓp(En)en

∥

∥

∥

∥

∥

X

∥

∥

∥

∥

∥

∑

n

‖(y′i,n)i‖ℓq′ (E
′
n)e

′
n

∥

∥

∥

∥

∥

X′

≤

(1 + ε)KK(p)(X)K(q′)(X ′)

(

∑

i

∥

∥

∥

∥

∥

∑

n

‖xi,n‖Enen

∥

∥

∥

∥

∥

p

X

)1/p




∑

i

∥

∥

∥

∥

∥

∑

n

‖y′i,n‖E′
n
e′n

∥

∥

∥

∥

∥

q′

X′





1/q′

≤

(1 + ε)KK(p)(X)K(q)(X).

�
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