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A FRAMEWORK FOR FAST CLASSIFICATION ALGORITHMS 

Thakur Ghanshyam, Ramesh Chandra Jain 

Abstract: Today, due to globalization of the world the size of data set is increasing, it is necessary to discover the 
knowledge. The discovery of knowledge can be typically in the form of association rules, classification rules, 
clustering, discovery of frequent episodes and deviation detection. Fast and accurate classifiers for large 
databases are an important task in data mining. There is growing evidence that integrating classification and 
association rules mining, classification approaches based on heuristic, greedy search like decision tree induction. 
Emerging associative classification algorithms have shown good promises on producing accurate classifiers. In 
this paper we focus on performance of associative classification and present a parallel model for classifier 
building. For classifier building some parallel-distributed algorithms have been proposed for decision tree 
induction but so far no such work has been reported for associative classification. 

Keywords: classification, association, and data mining. 

1. Introduction 
Data mining algorithms task is discovering knowledge from massive data sets. Building classifiers is one of the 
core tasks of data mining. Classification generally involves two phases, training and test. In the training phase the 
rule set is generated from the training data where each rule associates a pattern to a class. In the test phase the 
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generated rule set is used to decide the class that a test data record belongs to. Traditionally, greedy search 
techniques such as decision trees [8] and others are used to develop classifiers. Decision Tree Induction 
approaches have been preferred to other traditional techniques due to the generation of small rule set and 
transparent classifiers. Transparent classifier means that rules are straightforward and simple to understand, 
unlike some opaque classifiers, such as one generated by neural networks, where interpretation of rules is 
difficult. Greedy techniques in decision tree construction approaches tend to minimize overlapping between 
training data records to generate small rule sets. However small rule sets have some disadvantages. Greedy 
techniques may achieve global optimality if the problem has a optimal substructure. A novel technique of 
associative classification based on association rule mining searches globally for all rules that satisfy minimum 
support and count thresholds [5]. 

2. Work already done in the field. 
Several methods for improving the efficiency of all approach have been proposed [4,5,7,9,10] based on a 
recursive method for constructing a decision tree. In associative classification the classifier model is composed of 
a particular set of association rules, in which consequent of each rule is restricted to classification class attribute. 
The experiments in [4,5,7] show that this approach achieves higher accuracy than traditional approaches. Many 
sequential algorithms have been proposed for associative classification [4,5,7,9,10]. However associative 
classification suffers from efficiency due to the fact that it often generates a very large number of rules in 
association rule mining and it also takes efforts to select high quality rules from among them [7].  
Since data mining is mostly applied on databases, which are very large, to improve the performance parallel 
algorithms are needed. Many parallel approaches have been given for association rule mining [11] and decision 
tree classifiers [3], no parallel algorithm has been proposed for associative classification. In this paper a model is 
proposed for parallel approach of associative classification for significant performance improvement. We propose 
a parallel model for CBA [5] algorithm. 

3. Proposed methodology 
Parallel Approaches for Data Mining:  
Since data mining is frequently applied over large datasets, performance of algorithms is of concern. Exploiting 
the inherent parallelism of data mining algorithms provide a direct solution to their performance lift. A 
classification of different approaches to parallel processing for data mining is presented in [3]. 
Parallel Approaches:  
1.Task Parallelism 

1. Divide & Conquer 
2. Task Queue 

Task-parallel algorithms assign portions of the search space to separate processors. The task parallel 
approaches can again be divided in two groups. The first group is based on a Divide and Conquer strategy that 
divides the search space and assigns each partition to a specific processor. 
2.Data Parallelism 

1. Record Based 
2. Attribute Based 

The second group is based on a task queue that dynamically assigns small portions of the search space to a 
processor whenever it becomes available. Data-parallel, approaches distribute the data set over the available 
processors. Data-parallel approaches are in two directions. A partitioning based on records will assign non-
overlapping sets of records to each of the processors. Alternatively a partitioning of attributes will assign sets of 
attributes to each of the processors. Attribute-based approaches are based on the observation that many 
algorithms can be expressed in terms of primitives that consider every attribute in turn. If attributes are distributed 
over multiple processors, these primitives may be executed in parallel. Many other issues on parallel processing 
of data mining with respect to Association Rule mining have been presented in [11].  
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The main challenges include synchronization and communication minimization, workload balancing, finding good 
data layout, data decomposition, and disk I/O minimization. 
The parallel design space spans three main components:  

1. The hardware platform, 
2. The type of parallelism,  
3. The load-balancing strategy.  

Two dominant approaches for using multiple processors have emerged:  
Distributed memory (where each processor has a private memory)  
In distributed-memory (DMM) architecture, each processor has its own local memory and independent hard disk, 
which only that processor can access directly. For a processor to access data in the local memory of another 
processor, message passing must send a copy of the desired data elements from one processor to the other. A 
distributed memory, message-passing architecture cures the scalability problem by eliminating the bus, but at the 
expense of programming simplicity 
Shared memory (where all processors access common memory). 
Shared-memory (SMP) architecture has many desirable properties. Each processor has direct and equal access 
to all the system’s memory. Parallel programs are easy to implement on such a system. A different approach to 
multiprocessing is to build a system from many units, each containing a processor and memory. Although shared 
memory architecture offers programming simplicity, a common bus’s finite bandwidth can limit scalability. Load 
balancing strategies entail static or dynamic approaches. Static load balancing initially partitions work among the 
processors using a heuristic cost function, no subsequent data or computation movement is available. Dynamic 
load balancing seeks to address this by taking work from heavily loaded processors and reassigning it to lightly 
loaded ones. Computation movement also entails data movement, because the processor responsible for a 
computational task needs the data associated with that task. Dynamic load balancing thus incurs additional costs 
for work and data movement, and also for the mechanism used to detect whether there is an imbalance. 
However, dynamic load a balancing is essential if there is a large load imbalance or if the load changes with time. 
Dynamic load balancing is especially important in multi-user environments with transient loads and in 
heterogeneous platforms, which have different processor and network speeds. These kinds of environments 
include parallel servers and heterogeneous clusters, meta-clusters, and super-clusters (the so called grid 
platforms that are becoming common today).There are various approaches that can be applied to parallel 
processing of data mining algorithms. Cost measures for various parallel data mining strategies to predict their 
computation, data access and communication performance are presented in [6]. 
I. Associative Classification 
Associative Classification is an integrated framework of Association Rule Mining (ARM) and Classification. 
Focusing on a special subset of association rules whose right-hand-side is restricted to the classification class 
attribute does the integration. This subset of rules is referred as the Class Association Rules (CARs). CBA 
(Classification Based on Associations) [5] is a sequential approach of building associative classifier. CBA consists 
of two parts, a rule generator (called CBA-RG), which is based on algorithm Apriori for finding association rules in 
[2], and a classifier builder (called CBA-CB). CBA approach is described below. Assuming given dataset is a 
normal relational table, which consists of N cases described by l distinct attributes. These N cases have been 
classified into q known classes. For Associative Classification it is assumed that in training data set all continuous 
attributes (if any) have been discretized as a preprocessing step. For all attributes, all the possible values are 
mapped to a set of consecutive positive integers. With these mappings, a data case can be treated as a set of 
(attribute, integer-value) pairs and a class label. Each (attribute, integer-value) pair is called an item. Let D be the 
dataset. Let I be the set of all items in D, and Y be the set of class labels. We say that a data case d∈D contains 
X⊆ I, a subset of items, if X⊆ d. A classification rule (CAR) is an implication of the form X→ y, where X⊆ I, and 
y∈Y. A rule X→y holds in D with confidence c if c% of cases in D that contain X are labeled with class y. The 
rule X→y has support s in D if s% of the cases in D contain X and are labeled with class y.  
Rule Generator CBA-RG  
The key operation of CBA-RG is to find all ruleitems that have support above minsup. A ruleitem is of the form: 
<condset, y>, where condset is a set of items, y∈  Y is a class label. The support count of the condset (called 
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condsupCount) is the number of cases in D that contain the condset. The support count of the ruleitem (called 
rulesupCount) is the number of cases in D that contain the condset and are labeled with class y. Each ruleitem 
basically represents a rule: condset→y, whose support is (rulesupCount / |D|) *100%, where |D| 
is the size of the dataset, and whose confidence is(rulesupCount / condsupCount)*100%. Ruleitems that satisfy 
minsup are called frequent ruleitems, while the rest are called infrequent ruleitems. For example, the following is 
a ruleitem: <{(A, 1), (B, 1)}, (class,1)>, where A and B are attributes. If the support count of the condset {(A, 1), 
(B, 1)} is 3, the support count of the ruleitem is 2, and the total number of cases in D is 10, then the support of the 
ruleitem is 20%, and the confidence is 66.7%. If minsup is 10%, then the ruleitem satisfies the minsup criterion. 
We say it is frequent. For all the ruleitems that have the same condset, the ruleitem with the highest confidence is 
chosen as the possible rule (PR) representing this set of ruleitems. If there are more than one ruleitem with the 
same highest confidence, we randomly select one ruleitem. For example, we have two ruleitems that have the 
same condset: 

1. <{(A, 1), (B, 1)}, (class: 1)>. 
2. <{(A, 1), (B, 1)}, (class: 2)>. 

Assume the support count of the condset is 3. The 
support count of the first ruleitem is 2, and the 
second ruleitem is 1. Then, the confidence of 
ruleitem 1 is 66.7%, while the confidence of 
ruleitem 2 is 33.3% With these two ruleitems, we 
only produce one PR (assume |D| = 10): (A, 1), (B, 
1)_(class, 1) [support = 20%, confidence= 66.7%]. 
If the confidence is greater than minconf, we say 
the rule is accurate. The set of class association 
rules (CARs) thus consists of all the PRs that are 
both frequent and accurate. 
The CBA-RG algorithm generates all the frequent 
ruleitems by making multiple passes over the data. 
In the first pass, it counts the support of individual 
ruleitem and determines whether it is frequent. In 
each subsequent pass, it starts with the seed set 
of ruleitems found to be frequent in the previous 
pass. It uses this seed set to generate new 
possibly frequent ruleitems, called candidate 
ruleitems. The actual supports for these candidate 
ruleitems are calculated during the pass over the 
data. At the end of the pass, it determines which of 
the candidate ruleitems are actually frequent. 
From this set of frequent ruleitems, it produces the 
rules (CARs). Let k-ruleitem denote a ruleitem 
whose condset has k items. Each element Fk of 
this set is of the following form: <(condset, 
condsupCount), (y, rulesupCount)>.  
The CBA-RG algorithm is given in Figure 1. 
II.Building a Classifier CBA-CB 
To produce the best classifier out of the whole set 
of rules, a heuristic approach is used. A total order 
on the generated rules is defined. For more details 
on CBA approach readers are referred to [5]. This 
is used in selecting the rules for classifier.  
Definition: Given two rules, ri and rj, ri rj (also 
called ri precedes rj or ri has a higher precedence 

 
F1 = {large 1-ruleitems}; 
CAR1 = genRules(F1); 
for (k = 2; Fk-1 ≠φ ; k++) do 

  Ck = candidateGen(Fk-1); 
  for each data case d∈D do 
    Cd = ruleSubset(Ck, d); 
    for each candidate c∈ Cd do 
      c.condsupCount++; 
      if d.class = c.class then c.rulesupCount++; 
    end 
  end 
  Fk = {c∈ Ck | c.rulesupCount >=minsup}; 
  CARk = genRules(Fk); 
end 
CARs =∪ k CARk; 
 

 

Figure 1 
 

 
R = sort(R); // sort on precedence  
for each rule r∈R in sequence do  
   temp = φ ; 

   for each case d∈D do 
      if d satisfies the conditions of r then 
         store d.id in temp and mark r if it correctly 
                classifies d;  
   if r is marked then 
      insert r at the end of C; 
      delete all the cases with the ids in temp from D; 
      selecting a default class for the current C; 
      compute the total number of errors of C; 
    end 
end 
Find the first rule p in C with the lowest total number  
of errors and drop all the rules after p in C; 
Add the default class associated with p to end of C;  
return C (our classifier). 

 
 

Figure 2. The CBA-RG : M1 algorithm 
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than rj) if 1). the confidence of ri is greater than that of ri, or 2). their confidences are the same, but the support of 
ri is greater than that of rj, or 3. both the confidences and supports of ri and rj are the same, but ri is generated 
earlier than rj; 
Let R be the set of generated CARs and D the training data. The basic idea of the algorithm is to choose a set of 
high precedence rules in R to cover D. 
Our classifier is of the following format: <r1,r2,r3,…,rn, default_ class >, where ri∈R, ra rb if b> a. default_class is 
the default class. In classifying an unseen case, the first rule that satisfies the case will classify it. If there is no 
rule that applies to the case, it takes on the default class as in C4.5. A pseudo code of algorithm M1 for building 
such a classifier is shown in Figure 2.  
III. Parallel and Distributed Associative 
Classification 
CBA is an associative classification algorithm 
that uses an Apriori based approach to mine 
CARs and produces a subset of these CARs 
after pruning to form a classifier. We adapt 
here popular CBA algorithm discussed in 
section 3 to present our approach of parallel 
associative classification. For both phases of 
associative classification, rule generation 
phase and classifier builder phase our 
approach is based on Distributed Memory 
Systems, Record Based data parallelism and 
uses Static Load Balancing. The above 
configuration of parallel approach suits to the 
inherent parallel nature of existing serial 
approach. Three parallel versions of Apriori 
are given in [1] on shared nothing 
architecture. We adapt count distribution 
algorithm of ARM mining for mining of CARs 
in associative classification and present 
parallel version of CBA-M1 for classifier 
building. Count distribution approach has 
minimized communication among the 
processors. For CARs mining the training 
data set is partitioned among P processors. 
Each processor works on its local partition of 
the database and performs same  
 set of instructions to mine CARs that have 
global min support and confidence. Later 
when all CARs are found, same partitions of 
training set are used in respective nodes and 
pruning process based on coverage analysis 
is applied in parallel to generate reduced set 
of CARs, to form classifier. Our approach 
simply achieves load balancing if training data 
sets are sufficiently randomly distributed over 
different processors to avoid any data skew.  
It can simply be inferred 
|D| = N and number of processors = p 
|Di| =  |D|/p   (approximately),  i=1,2,…p 

Ck Set of candidate k-ruleitems  

Fk Set of frequent k-ruleitems 

D Training Dataset  

Di Local Training Dataset on ith Processor 

Pi  ith Processor 

R Set of generated CARs 
 

Figure 3. Notations 
 

 
do in parallel 
  k = 2; 

  while (Fk-1 ≠φ ) do 

    for each processor Pi (i=1..p) do 
      Ck = candidateGen(Fk-1); 
      for each data case d∈D do 
        Cd = ruleSubset(Ck, d); 
        // compute local support for ruleitems 
        for each candidate c∈Cd do 
          c.condsupCount++; 
          if d.class = c.class then c.rulesupCount++ 
        end 
      end 
      exchange local Ck counts with all other processors  

and synchoronize; 
      for each c∈Ck  c.condsupCount=∑Pi(i=1..p)c.condsupCount; 
        c.rulesupCount =∑ Pi (i=1..p)c.rulesupCount; 
      end 
      Fk = {c∈Ck | c.rulesupCount >=minsup}; 
      CARk = genRules(Fk); 
      k++; 
  end while 
  CARs =∪ CARk 
End parallel 
 

 

Figure 4 
 
 



International Journal "Information Theories & Applications" Vol.15 / 2008 
 

 

368

The necessary communication among processors is through message broadcasting. There has been no need of 
dynamic load balancing as the Associative Classifier builder task does not involve multi-user environment with 
changing training data sets during learning. As in ARM in associative classification too the static load balancing is 
inherent in the partitioning of the database among processors because training data sets have been made 
available in a homogeneous environment. Parallel versions adapted from CBA for CAR generation and classifier 
builder are presented below.  
Pseudo codes given in Figure 4 use notations given in Figure 3. 
Parallel CAR generation phase 
At the time of generating partitions Di for processors Pi, F1 and hence CAR1 can be generated and distributed to 
distributed processors along with data partitions. Hence algorithm begins with a seed of F1. During partitioning 
class_distribution i.e. number of data cases for each of the classes will also be computed and distributed to 
processors to be used during class builder phase. Pseudo code of parallel rule generation algorithm is presented 
in figure 4. 
In Parallel CAR generation algorithm each processor independently and in parallel generates identical Ck for k >1 
and calculates local counts and broadcast these to all other processors. At this step processors synchronize and 
wait for all other processors to compute and broadcast their local counts. Summing local counts of all processors 
global counts for Ck are computed. Each processor now computes Fk and generates CARs from Fk. Process is 
iterated for next k till until Fk is empty. At the end of rule generation algorithm each processor has complete set of 
CARs. 

4. Cost Measures For Proposed Model 
All this information exchanged is integer valued and its volume is very small. 
Cost estimate of sequential CBA approach based on cost models in [6] is as follows. Global structure of both rule 
generation and class builder algorithms is a loop building more accurate concepts from those of the previous 
iterations. Suppose loop in rule generation algorithm and classifier builder algorithms executes ks1,ks2 times and 
builds Ω1,,Ω2 concepts respectively. Total size D is N and number of attributes in D is l. The cost estimate of the 
sequential CBA algorithm can be given by formula  

Costseq = ks1 [ STEP(N*l, Ω1) + ACCESS (N*l) ]  + ks2 [ STEP(N*l, Ω2) + ACCESS (N*l) ] 
Where STEP gives the cost of single iteration of the loop, and ACCESS is the cost of accessing the data set 
once. 
If the CBA is performed in parallel version of rule generation algorithm and classifier builder algorithms and 
requires ka1,ka2 iterations respectively with number of p processors, formula for the cost can be given by 

Costpar = ka1 [STEP(N*l/p, Ω1)+ACCESS (N*l/p) + Ce1] + ka2 [ STEP(N*l/p, Ω2)+ACCESS (N*l/p)+Ce2] 
Ce1, Ce2 are total cost of communication and information exchange between the processors. 
It can be reasonably assumed that  
STEP(N*l/p, Ω1) = STEP(N*l, Ω1)/p 
and 
ACCESS (N*l/p) = ACCESS (N*l)/p 
So, we get significant p-fold speedup in executing parallel version except cost of overheads. In our model 
overhead cost is small as information exchanged is integer valued and its volume is very small. 

5. Conclusion 
In this paper the focus was on the performance of classifier builder approach known as associative classification. 
We proposed a model to show that associative classification task can be performed in parallel on distributed 
memory systems to achieve a significant performance lift. We have presented parallel versions for both ruled 
generation and class builder phase of sequential CBA algorithm for load balancing we have distributed almost 
equal number of data sets randomly on each of the local processors to avoid data skewness.  
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ENHANCING INFORMATION RETRIEVAL BY USING EVOLUTION STRATEGIES 

Abdelmgeid Amin Aly 

Abstract: Similar to Genetic algorithm, Evolution strategy is a process of continuous reproduction, trial and 
selection. Each new generation is an improvement on the one that went before. This paper presents two different 
proposals based on the vector space model (VSM) as a traditional model in information Retrieval (TIR). The first 
uses evolution strategy (ES). The second uses the document centroid (DC) in query expansion technique. Then 
the results are compared; it was noticed that ES technique is more efficient than the other methods.  

1. Introduction 
Since the 1940s the problem of Information Retrieval (IR) has attracted increasing attention, especially because 
of the dramatically growing availability of documents. IR is the process of determining relevant documents from a 
collection of documents, based on a query presented by the user.  
There are many IR systems based on Boolean, vector, and probabilistic models. All of them use their model to 
describe documents, queries, and algorithms to compute relevance between user's query and documents. 
Information Retrieval (IR) proposes solutions for searching, in a given set of objects, for those replying to a given 
description. IR tries to make a suitable use of these databases, allowing the users to access to the information 
which is really relevant in an appropriate time interval [1]. Unfortunately, commercial IR Systems (IRSs), usually 
based on the Boolean IR model [2], have provided unsatisfactory results. Vector space, probabilistic and fuzzy 
models, which have been developed to extend the Boolean model [3], as well as the application of knowledge-


