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THE KNOWLEDGE: ITS PRESENTATION AND ROLE IN RECOGNITION SYSTEMS 
A. D. Zakrevskij 

 
Abstract: The concept of knowledge is the central one used when solving the various problems of data 
mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of 
knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of 
modern logic: the inductive inference and the deductive inference. The first one is used for extracting the 
knowledge from the data. The second is applied when the knowledge is used for calculation of the goal 
attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite 
predicates represented by logical vectors and matrices. 

 

INTRODUCTION 

Knowledge is the central concept in a wide variety of investigations dedicated to pattern recognition problems 
[1, 3, 6]. Solving them begins with the choice of a proper world model  – an abstract artificial world reflecting 
some important qualities of real subject areas – important from the point of view of the problems to be solved.  
In this paper, we use a very simple model which defines this abstract world as a finite set of objects 
possessing some combinations of qualities. More formally, this model is defined as a set W of logical  n-
vectors presenting values of attributes composing the set  X = {x1, x2, ..., xn}. The attributes could be binary 
(Boolean) or multi-valued. In the latter case each of the attributes xi is characterized by a corresponding finite 
set Vi of alternative values. The Cartesian product of these sets V1 × V2 × ... × Vn (or {0, 1}n in the binary case) 
constitutes the space of attributes M. Elements from W can be regarded as abstract models of real objects of 
a natural subject area. The world as a whole is represented by a subset W ⊆ M or by the corresponding finite 
predicate  ϕ (x1, x2, ..., xn) which takes value 1 on the elements of the set W. In case of two-valued attributes 
this predicate is a Boolean function f (x1, x2, ..., xn). That approach is rather simple, inasmuch the world is 
considered only as the set of its elements (without regarding any relations between them), but it is sufficient 
for solving many practical problems.   
Usually, only partial information about the world W is known represented in terms of data and knowledge. 
Suppose that the data present information concerning some separate elements from W, describing these 
elements by corresponding logical vectors. Taken together, these vectors represent a so called sampling 
population (a reliable selection from the subject area) and constitute the set F serving further as a database. 
As a rule, |W|<< |M| and |F|<< |W|. The knowledge, on the contrary, presents information about qualities of 
the whole subject area, expressed by some inherent in the regarded subject area regularities which establish 
some relationships between attributes.  
Both data and knowledge present information about the regarded world, but they are of different type. 
Comparing them, we could say that data consist of affirmations about the existence of some objects with 
definite combinations of qualities. Unlike that, the knowledge puts some restrictions on what is possible, 
affirming the non-existence of objects with some other combinations of qualities. 
The pattern recognition process, taken as a whole, may be roughly divided into two main stages: obtaining 
some knowledge by data mining and predicting values of goal attributes by using this knowledge. The 
methods of inductive and deductive inference are applied at these stages, accordingly. Their efficiency 
depends greatly on the form in which the knowledge is presented. A special attention is paid below to this 
point.  
 

THE KNOWLEDGE – CONCEPT AND FORMAT 

Within the framework of our world model, the knowledge is defined as a set of regularities. The key question is 
to choose a proper model for them. Starting from general assumptions it is accepted that any regarded 
regularity defines a logical connection between some attributes: it means that some combinations of attribute 
values are declared impossible (prohibited).  
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Evidently, the less attributes are connected by some regularity, the stronger is the latter. That is confirmed, for 
instance, by the long history of investigations in physics and other nature sciences. On the other hand, if we 
choose several attributes and decide to connect them by a regularity, it will be the weakest when it forbids 
only one combination of those attributes values.  
In the Boolean case such a regularity can be expressed by the logical equation ki = 0 or by the equivalent to 
it equation di = 1, where ki is a conjunct formed of some attributes (in direct or inverse mode) from the set X, 
and di is the corresponding disjunct, satisfying the relation d I  = ¬ ki. For instance, equations ab’c = 0 and 
a’ ∨ b ∨ c’ = 1 ( ’ is the symbol of inversion, equivalent to ¬) represent the same regularity, which prohibits 
the combination of values a = 1, b = 0, c = 1  .  
A regularity of this kind is called implicative (more general than functional one) [5]. It prohibits a set of attribute 
value combinations forming an interval in the Boolean space M over X – the characteristic set of the conjunct 
ki. In other words, the regularity affirms that this interval is empty, not containing any elements of the world W. 
The size of that interval (the number of its elements) equals 2n-r, where n is the number of all attributes and r is 
the rank of the implicative regularity – the number of attributes coming into it. It becomes clear now how the 
strength of the regularity is defined by its rank.  
Suppose that X  = {a, b, c, d, e, f } and consider the implicative regularity ab′e = 0 forbidding the combination 
101 of values of the attributes a, b, e, accordingly. The corresponding empty interval of the space M contains 
eight elements: 100010, 100011, 100110, 100111, 101010, 101011, 101110 and 101111. All these elements 
(α) are ”between” two elements 100010 (minimal) and 101111 (maximal), satisfying the inequality 100010 ≤ 
α ≤ 101111, and hence justifying the term interval. The equation ab′e = 0 may be changed for the equivalent 
equation ab′e → 0 with the implication operator → (if… then…), known as a sequent (its left part is always a 
conjunction, and the right part – a disjunction). The latter equation may be subjected to equivalence 
transformations consisting of transferring arbitrary literals between the left part (conjunction) and the right one 
(disjunction), changing each time their type (positive for negative or vice versa). In such a way we could obtain 
the following set of the equivalent equations   
 ae → b  (if a = 1 and  e = 1, then b = 1), ab’ → e’, a → b ∨ e’, …, 1 → a’ ∨ b ∨ e’.  
The last one could be changed for the disjunctive equation a’ ∨ b ∨ e’ = 1, which may be coded by the ternary 
vector 01 - - 0 - . 
A set of regularities given in such a form can be presented by a ternary disjunctive matrix D, called below a 
knowledge matrix, which columns are marked with attribute symbols.  For example, the knowledge matrix 
     a  b  c  d  e  f  g  h  

     1  -   -   0  -   -   0   - 
    D  =     -   -   -  1  -   1   -   - 
  0  1   -   -   -   -   -   -  

affirms that every object of the regarded area must satisfy the equations  

   a ∨ d′ ∨ g′ = 1,  d ∨ f = 1,  and  a′ ∨ b = 1.  

In other words, in the considered Boolean space there exists no object which has any of the following 
combinations of values of some attributes:  
   (a = 0, d = 1, g = 1), (d = 0, f = 0) and (a = 1, b = 0).  

The set of these equations can be reduced to one equation D = 1 where D is a CNF (conjunctive normal form) 
represented by the matrix D.  

   D  = (a ∨ d′ ∨ g′ ) ( d ∨ f ) (a′ ∨ b) = 1. 

By inverting both left and right parts of the equation D = 1 we get the equivalent equation K = 0 with the left 
part K = ¬ D  – a DNF (disjunctive normal form) presenting a so called veto function V, which defines the 
prohibition area.  
For the regarded example 

   K = a’dg ∨ d’f’ ∨ ab’ = 0.   
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The suggested form of implicative regularities turned out to be extremely convenient at the stage of deductive 
inference, where the methods developed for theorem proving automation are successfully applied [2].  As it is 
shown below, regularities of the considered type could be rather easily discovered in the database, and it is 
not difficult to evaluate their strength and plausibility, which is very important for their further application. 
In the case of finite predicates generalized conjuncts and disjuncts could be used to present the knowledge 
[7, 8]. Any interval in the space of multi-valued attributes is defined as a direct product of non-empty subsets 
αi  taken by one from each set Vi. Its characteristic function is defined as a conjunct, and the negation of the 
latter is a disjunct. 
Suppose X = {x, y, z}, and the attributes x, y, z select their values from the corresponding sets V1 = {a, b, c}, 
V2 = {a, e, f, g}, V3 = {h, i} (note that these sets may intersect). Let α1 ={a}, α2 ={a, e, g}, α3 ={h, i}. The interval 
I = α1 × α2 × α3  has the characteristic function (conjunct)   

   k = (x = a) ∧ ((y = a) ∨ (y = e) ∨ (y = g)) ∧ ((z = h) ∨ (z = i)),  

which could be simplified to  

   k = (x = a) ∧ ((y = a) ∨ (y = e) ∨ (y = g)), 

inasmuch as (z = h) ∨ (z = i) = 1. If this product enters the equation k = 0 which reflects a regular connection 
between x and y, then I ∩ W = ∅, i. e. the interval  I  turns out to be empty. 
As it can be seen from the given example, the structure of a conjunctive term in the finite predicate algebra is 
more intricate compared with that of the binary case – the two-stage form of the type  ∧ ∨  is inherent in it. 
One can avoid that complexity changing the equation k = 0 for the equivalent equation  ¬ k = 1 and 
transforming  ¬ k into a one-stage disjunctive term d. Such transformation is based on the de-Morgan rule 
and changes expressions ¬ (xi ∈ αi) for equivalent expressions xi ∈ Vi\αi . This is possible since all sets Vi 
are finite. 
For the considered example 

  d = ¬ k = (x ≠ a) ∨ ((y ≠ a) ∧ (y ≠ e) ∧ (y ≠ g)) = (x = b) ∨ (x = c) ∨ (y = f). 

Adhering to the tradition, let us call similar expressions as disjuncts. Suppose that the knowledge obtained 
either from experts or by induction from the data is represented by a set of disjuncts d1, d2, ..., dm . Generated 
by them, equations di = 1 are interpreted as conditions which should be satisfied for any objects of the world, 
and it is possible to reduce them (equations) to a single equation D = 1 the left part of which is presented in 
the conjunctive normal form – CNF D = d1 ∧ d2 ∧ ... ∧ dm . It follows from here that in the finite predicate 
algebra the CNF has some advantage over the disjunctive normal form – DNF  K = k1 ∨ k2 ∨ ... ∨ km  which is 
used in the equivalent equation  K = 0. Indeed, DNF has three stages  (∨ ∧ ∨), whereas CNF – only two (∧ 
∨). 
In the case of multi-valued attributes, it is more convenient to use sectional Boolean vectors and matrices 
introduced for representation of finite predicates [7]. A sectional Boolean vector consists of some sections 
(domains) corresponding to attributes and each section has several binary digits corresponding to the attribute 
values indicating definite properties. For example, the section corresponding to the attribute color, which has 
the values blue, red, green, yellow, brown, black and white, should have 7 bits. For the example given above, 
the vector 010.1000.01 describes an object with the value b of the attribute x, the value a of the attribute y and 
the value i of the attribute z. Obviously, if a vector represents some element of the space M of multi-valued 
attributes, it has the only 1 in each section. The situation is different in the case of some fuzziness. The vector 
011.1001.01 can be interpreted as presenting a partial information about the object, when we know only that  
x ≠ a, y ≠ e, y ≠ f  and  z ≠ h. Note, that each of these inequalities serves as an information quanta and is 
marked by a zero in the corresponding component of the vector. 
Giving an example of presenting the knowledge, suppose that X = {a, b, c}, V1 = {1, 2, 3}, V2 = {1, 2, 3, 4} and 
V3 = {1, 2}. Then the knowledge matrix 
       a    b         c 

    0 0 1 . 0 0 1 0 . 0 0     
                                   D =   1 1 0 . 0 0 1 1 . 0 1 
                                            0 1 0 . 1 1 0 0 . 1 0 
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                                            0 0 1 . 0 1 0 0 . 0 1 
may be interpreted as a set of disjunctive equations 

   (a = 3) ∨ (b = 3) = 1, 
   (a = 1) ∨ (a = 2) ∨ (b = 3) ∨ (b = 4) ∨ (c = 2) = 1, 
   (a = 2) ∨ (b = 1) ∨ (b = 2) ∨ (c = 1) = 1, 
   (a = 3) ∨ (b = 2) ∨ (c = 2) = 1 
or as one equation with a CNF in the left part:  

 ((a = 3)∨(b = 3)) ∧ ((a = 1)∨(a = 2)∨(b = 3)∨(b = 4)∨(c = 2)) ∧ 
 ∧ ((a = 2)∨(b = 1)∨(b = 2)∨(c = 1)) ∧ ((a = 3)∨(b = 2)∨(c = 2)) = 1. 
 

DATA MINING 

A very important part of the pattern recognition problem is obtaining knowledge from data [3]. The data could 
be represented by a sampling population F – a set of some randomly selected elements from the regarded 
world W. 
As it was formulated above, we solve that problem by analyzing the distribution of elements of the set F in the 
space M (suppose it is Boolean) and revealing implicative regularities which are reflected by empty intervals 
(not intersecting with F). That operation can be reduced to observing a Boolean data matrix K and looking for 
such combinations of attribute values which do not occur there.  
The number of attributes coming into an implicative regularity is called its rank. It coincides with the rank of the 
corresponding interval. Remind that the less attributes are tied with a regularity, the stronger is the tie. So, it is 
worthwhile to look for regularities of smaller rank. 
Consider, for example, the following data matrix K: 
    a  b  c  d  e  f 

    1  0  0  1  1  0 
    0  1  1  1  0  0 
    1  1  0  1  0  1 
    0  0  0  1  1  0 
    0  1  0  1  1  0 
    0  0  1  0  1  0 
    1  1  1  1  0  0 
    1  0  0  0  1  1 
 
There are no empty intervals of the rank 1, because each column contains 1s and 0s. So we look further for 
empty intervals of the rank 2 and find five of them, corresponding to the following combinations: (a = 0, f = 1), 
(b = 1, d = 0), (b = 0, e = 0), (c = 1, f = 1), (d = 0, e = 0). In a more compact form these intervals may be 
represented by conjuncts a’f, bd’, b’e’, cf, d’e’. Can we consider that these found empty intervals reflect real 
regularities inherent in the world from which the data were extracted?  Such conclusions could be accepted if 
only they are plausible enough. 
Consider the general case of n binary attributes and m elements in the sampling population (selection) F. 
Suppose, we have found an empty interval of the rank r (comprising 2n-r elements of the Boolean space M and 
put forward the corresponding hypothesis, affirming that this interval is free of any elements from the regarded 
world W. May we rely on it and make with its help some logical conclusions when recognizing an object with 
the unknown value of the goal attribute?  The problem is to estimate the plausibility of that hypothesis.  
We should take into account that the regarded interval could be empty quite accidentally, while in reality the 
selection F is taken by random from the whole space M – in that case there could be no regularities in the 
disposition of the elements from F in M. 
It would be useful to express the probability p of such an event as a function p(n, m, r) of the parameters 
n, m, r. The hypothesis can be accepted and used further in procedures of deductive inference if only this 
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probability is small enough. Its calculation is rather difficult, so it was proposed in [5] to approximate it by the 
mathematical expectation E(n, m, r) of the number of empty intervals of the rank r.  
That value can be calculated by the formula 
    E(n, m, r) = Cnr 2r (1-2-r)m , 

where  Cnr  is the number of r-element subsets of an n-element set,  Cnr 2r   is the number of intervals of the 
rank  r in the space M, and (1-2-r)m is the probability of some concrete interval of the rank r to be empty, not 
containing any elements from F.  
Some empty intervals could intersect, hence E(n, m, r) ≥ p(n, m, r). The question is how big could be the 
difference E(n, m, r) – p(n, m, r)? It was shown, that it becomes negligible small for small values of E(n, m, r). 
But that is just the case of interest for us.  
It turns out that the value of the function  E(n, m, r)  grows very rapidly with rising  r. That is evident from the 
Table 1 of the dependence  E  on   r   under fixed values of other parameters:  n = 100 and  m = 200. 
 

   Table 1. The dependence E on r under fixed  n and m  
           r        1                2                3                4               5                6 
E(100,  200, r)  1.24×10-58    2.04×10-21  3.26×10-6  1.56×102   4.21×106   3.27×109   

 
It is clear that the search for empty intervals and putting forward corresponding hypotheses can be restricted 
in this case by the relation r < 4. If some empty interval of the rank r < 4 is found, we can formulate the 
corresponding regularity with good reason, but there are no grounds for that if   r ≥ 4. So, when  n = 100  and  
m = 200, there is no sense in looking for empty intervals of the ranks more then 3. The search for regularities 
could be strongly restricted in that case by checking for emptiness only intervals of the ranks 1, 2 and 3, which 
number is  
   C1001×21  +  C1002×22  + C1003×23 = 1,333,400.  

Not much, compared with the number 3100 of all intervals in the Boolean space of 100 variables, approximately 
5.15×1047.  
A threshold ω may be introduced to decide whether it is reasonable to regard an empty interval as presenting 
some regularity: the positive answer should be given when E < ω. Its choice depends on the kind of problems 
to be solved on the base of the found regularities.  
Suppose  ω = 0.01. Then the maximum rank rmax of intervals which should be analyzed when looking for 
regularities could be found from Table 2, showing its dependence on  n  and  m. 
 
 
   Table 2. The dependence of the maximum rank  rmax  on parameters  n  and  m 

 n \ m   20      50     100    200    500    1000 
   10    1        2        3        4        5        6       
   30    1        2        2        3        4        5       
 100           1        1        2        3        4        5       

 
Two conclusions, justified for the regarded range of parameters, could follow from this table. First, in order to 
increase rmax by one it is necessary to double the size of the experiment – the number m of elements in F. 
Second, approximately the same result could be achieved by reducing by a factor of 10 the number of 
attributes used for the description of the regarded objects. 
Suppose  rmax = 2 which is enough when the selection F is rather small. In that case we have to pay attention 
only to pairs of attributes, looking for some forbidden combinations of their values. This task can be executed 
by an incremental algorithm. It analyzes the elements of the selection F consecutively, one by one, and fix 
such two-element combinations which have occur, using a symmetrical square Boolean 2n×2n matrix S for 
that, with rows and columns corresponding to the values  x1 = 0, x1 = 1, x2 = 0, x2 = 1, etc. Its elements 
corresponding to occurring combinations are marked with 1. The rest combinations (not occurring) are 
presented by zero (empty) elements and accepted as forbidden. The regularities presented by them connect 
some attributes in pairs and are called syllogistic [6]. For example, regarding the following selection F (only to 
illustrate the algorithm, despite the fact that the selection is too small for  rmax = 2): 
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    a  b  c  d  e 

    0  1  0  0  1 1 
    1  1  0  1  1 2 
    1  0  0  1  1 3 
    0  1  1  0  0 4 
    1  0  0  1  1 5 
    0  1  1  0  0 6 
 
we shall find in the end ten two-element combinations which do not occur in F, and consider them as 
syllogistic regularities. They can be presented by the following ternary knowledge matrix D: 
    a  b  c  d  e 

    0  0  -  -  - 
    0  -  -  1  - 
    1  -  1  -  - 
    1  -  -  -  0 
    D  =     -  0  1  -  -   
    -  0  -  0  - 
    -  0  -  -  0 
    -  -  1  1  - 
    -  -  1  -  1 
    -  -  -  1  0 
 
When the selection F is noticeably bigger compared with the number of attributes, the maximum rank rmax of 
implicative regularities could be 3, 4 or even more. The run-time for their finding swiftly increases. 
Nevertheless it is restricted, because the number of intervals to be checked could be approximated by Cn3 23, 
Cn4 24, etc. 
It is a little more difficult to extract knowledge from the space of n multi-valued attributes x1, x2, …, xn [9, 11]. 
To begin with, define the probability p that some concrete disjunct will be satisfied by an accidentally chosen 
element of the space. It could be calculated by the formula  
                    n 

    p = 1 – Π ( ri /si ) , 
               i  = 1 

where si is the number of all values of the attribute  xi , and  ri  – the number of those of them which do not 
enter this disjunct. For instance, p = 1 – 2/2×3/4×1/3 = 3/4 for the disjunct 00.1000.101. Let us divide all 
disjuncts into classes Dj , forming them from disjuncts with the same value of p. And let us number these 
classes in order of increasing p and introduce the following conventional signs: qj – the number of disjuncts in 
the class Dj , pj – the value of p for elements from Dj.  
Find now the mathematical expectation Ej of the number of disjuncts from the class Dj, which do not contradict 
the random m-element selection from the regarded space: 
     Ej = qj (pj)m , 

and introduce the analogous quantity  Ek+ for the union of classes D1, D2, …, Dk: 
               k 

     Ek+ = Σ  Ej . 
               I  = 1 

Inductive inference is performed by consecutive regarding classes Dj in order of their numbers and 
summarizing corresponding values Ej until the sum surpasses a threshold ω, which is introduced with taking 
into account the specific of the problems to be solved. All disjuncts belonging to these classes are accepted 
as regularities if they do not contradict the data, i. e. if they are satisfied by any element of the selection F. 
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The expert may fix several thresholds and assign accordingly different levels of plausibility to the found 
regularities. For example, regularities obtained by thresholds 10-10, 10-6, 10-3 could be estimated as absolutely 
plausible, usually, most likely. This differentiation gives some flexibility to recognition procedures. Choosing a 
proper level of plausibility one can use only some of regularities contained in the knowledge base and vary in 
such a way the plausibility of the logical conclusions obtained during recognition. For example, using only the 
most plausible regularities can result in obtaining a little number of logical conclusions, but more reliable ones, 
while extending the used part of the knowledge base extends also the set of obtained logical conclusions, at 
the expense of their plausibility.  
We do not regard here the important problem (touched in [12]) of extracting knowledge from partial data – 
when values of some attributes of the elements from F remain unknown.   
 

SOLVING EQUATIONS OF DEDUCTIVE INFERENCE 
The recognition problem can be regarded as the problem of a closer definition of qualities of some observed 
object not belonging to the experimental selection from the subject area [5, 14]. It is formulated in terms of 
logical equations, Boolean or predicate, and the tree searching technique of deductive inference is applied for 
their solution [4, 10, 13]. 
Suppose, we know the values of s from n attributes of this object. That is equivalent to location of the object in 
a certain interval of the Boolean space M presented by the corresponding elementary conjunction k of the 
rank s. The problem is to define by logical reasoning, as sure as possible, the values of the remaining n – s 
attributes, using for that the information contained in the knowledge ternary matrix D and in the corresponding 
veto function V. 
Let us regard the set Xk of attributes with known values and the set of all forbidden combinations of values of 
the remaining attributes − for the considered object. The latter set can be described by a proper Boolean veto 
function V(k) that could be easily obtained from V. Indeed, it is sufficient for that to transform the formula 
representing the function V by changing symbols of attributes presented in k for values (0 or 1) satisfying the 
equation k = 1. Denote this operation as V(k) = V:k.   
Suppose that we want to know the value of an attribute xi  which does not come into Xk. The necessary and 
sufficient condition for the prohibition of the value 1 of that attribute is presented by the formal implication  
kxi ⇒ V, i. e. belonging of the interval presented by the conjunction kxi to the prohibition region described by 
the function V. Analogously, the necessary and sufficient condition for the prohibition of the value 0 is 
presented by kxi’ ⇒ V. 
It is not difficult to deduce from here forecasting rules to define the value of the goal attribute xi of the object 
characterized by k. These rules are shown in a compressed form in Table 3 presenting the decision (a set of 
possible values of  xi  – the bottom row) as a function of predicates  kxi ⇒ V and   kxi’ ⇒ V.  
 
              Table 3. Forecasting the value of the attribute xi  

kxi ⇒ V 0 0 1 1 
kxi’ ⇒ V 0 1 0 1 
xi {0, 1} {1} {0} ∅ 

 
Note that four outcomes could appear at this approach. On a level with finding the only value (0 or 1) for the 
attribute xi, such situations could be met when both values are acceptable or neither of them satisfies the veto 
function V. At the last case the existence of the object α characterized by k contradicts the knowledge base, 
and that could stimulate some correction of the latter. However, the probability of such an event is low 
enough, taking into account the way of forming the knowledge base. 
For example, if  

   V = acf’ ∨ be’f ∨ a’d’e ∨ b’df ∨ b’c’d’  

and k = abf, then V(k) = V:abf = e’. It could be concluded from this that the regarded object α has value 1 of 
attribute e, but there are no restrictions on other attributes (c and d). If by the same function V the object α is 
characterized by k = c’e’f, then  

   V(k) = b ∨ b’d ∨ b’d’ = 1 (all is forbidden), 
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 and that means that the object contradicts the knowledge.  
The predicates  kxi ⇒ V and  kxi’ ⇒ V are accordingly equivalent to the predicates  V:kxi = 1 and V:kxi’ = 1, 
and that allows us to reduce their calculation to checking corresponding submatrices of the knowledge matrix 
D for consistency. Fixing values of some attributes in the function V is changed for selecting the 
corresponding minor of the matrix D by deleting some rows and columns, which could be followed by further 
possible simplification. 
Suppose, we regard the same (already minimized) knowledge matrix D corresponding to the veto function V = 
acf’ ∨ be’f ∨ a’d’e ∨ b’df ∨ b’c’d’ and know that for the observed object  a = 1 and c = 1. Taking into account 
this new information we transform the matrix D. We delete from it the columns marked with a and c because 
these variables became constant, and delete also the rows 3 and 5 now satisfied by these constants. Further 
simplification is rather evident, using the following rule:  x (x’ ∨ H) = x H, where x is a Boolean variable and H 
– an arbitrary Boolean formula. 
              a  b  c  d  e  f              b  d  e  f               b  d  e  f  

  0  -  0  -  -  1    1  -   -  -  1   -   -  -  1    
 D* = -  0  -  -  1  0    2     → 0  -  1  0      → 0  -  1  -   
  1  -  -  1  0  -    3   1  0  -  0   1  0  -  -    
  -  1  -  0  -  0    4       
  -  1  1  1  -  -    5         
  
We can conclude now that f = 1, by necessity. As to the remaining attributes, their values cannot be 
forecasted uniquely. They obey the next two conditions:  b’ ∨ e = 1  and  b ∨ d’ = 1. This system of logical 
equations has two solutions. Either b = d = 0 (with an arbitrary value of e), or b = e = 1 (with an arbitrary value 
of d).   
Solving the recognition problem in a special case, when the values of all attributes are known except the goal 
one, could be facilitated by preliminary partitioning the Boolean space of attributes into four regions. After that 
it would be sufficient only to find out to which of them the regarded object belongs and make the 
corresponding conclusion.  
The characteristic Boolean functions of these regions are obtained on the base of the rules shown in Table 3. 
The operations  f : xi  and  f : xi’  changing the argument  xi  of the function  f  for constant 1 or 0, accordingly, 
are used by that. The region where the value of the attribute  xi  remains unknown is described by the function 
V-(xi) = (V : xi)’∧(V : xi’)’, the region where  xi  receives the value 1 is presented by the function V1(xi) = 
(V : xi)’∧(V : xi’),  the region where xi receives the value 0 – by the function V0(xi) = (V : xi)∧(V : xi’)’, and the 
region of contradiction − by the function V*(xi) = (V : xi)∧(V : xi’). 
Using the same example we obtain: 

V = acf’ ∨ be’f ∨ a’d’e ∨ b’df ∨ b’c’d’, 
V : f  = be’ ∨ a’d’e ∨ b’d ∨ b’c’d’, 
V : f’ = ac ∨ a’d’e ∨ b’c’d’, 
V-(f) = (be’ ∨ a’d’e ∨ b’d ∨ b’c’d’)’ ∧ (ac ∨ a’d’e ∨ b’c’d’)’, 
V1(f) = (be’ ∨ a’d’e ∨ b’d ∨ b’c’d’)’ ∧ (ac ∨ a’d’e ∨ b’c’d’), 
V0(f) = (be’ ∨ a’d’e ∨ b’d ∨ b’c’d’) ∧ (ac ∨ a’d’e ∨ b’c’d’)’, 
V*(f) = (be’ ∨ a’d’e ∨ b’d ∨ b’c’d’) ∧ (ac ∨ a’d’e ∨ b’c’d’). 
 

DEDUCTIVE INFERENCE IN FINITE PREDICATES 
In the case of multi-valued attributes the disjunctive knowledge matrix D turns out to be a sectional Boolean 
matrix presenting some finite predicate. There is some specific in dealing with it [7, 10]. 
Let us state the central problem of deductive inference: a disjunctive matrix D and a disjunct  d  mated with  D 
(that means defined on the same pattern) are given, the problem is to find out whether d is a logical 
consequence of D. In other words, the question is if the conjunctive term d is derived from CNF D, that means 
it becomes equal to 1 on all elements of the space M where CNF D takes value 1? 
Two ways for solving such problems are known: the direct inference and the back inference. 
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When the direct inference is executed, the initial set of disjuncts is expanded consecutively by including new 
disjuncts following from some pairs of disjuncts existing already in the set. This procedure continues until the 
disjunct d is obtained or the set expansion is exhausted without finding d. At the last case it is proved that d 
does not follow from D. 
Any pair of disjuncts u and v can generate several disjuncts-consequents wi, obtained formally by the 
operation  wi = u<xi>v  which may be called the resolution in regard with the variable  xi  and which can be 
considered as the generalization of the resolution operation, well-known in the theory of Boolean functions, 
onto finite predicates. It is defined as follows: the domain (section) of  wi  corresponding to the variable  xi  
equals the component-wise conjunction of the corresponding domains from u and v (this can be considered 
as the unification by the variable xi), and the rest domains equal the component-wise disjunction of the 
corresponding domains from  u  and  v.  
But far not all disjuncts obtained in such a way deserve subsequent consideration. There is no sense in 
including into the regarded set a disjunct which follows from some other disjunct belonging to the set, because 
it represents only some expansion of the latter one. For example, disjunct 110.0111.00 follows from disjunct 
010.0110.00. It is reasonable to look only for non-trivial consequents. Such is a disjunct which follows from 
some pair of disjuncts u and v but does not follow from  u  or  v  taken separately. Let us call it a resolvent of 
disjuncts  u  and  v, and determine the rules for its obtaining. 
Disjuncts u and v are called adjacent in regard to the variable xi if and only if the corresponding domains are 
incomparable (their component-wise disjunction differs from each of these domains) and there exists in each 
of the rest domains a component with the value 0 in both vectors. Note that at violating the first condition a 
disjunct is obtained which follows either from u or from v, whereas at violating the second condition a trivial 
(identical to 1) disjunct is found, which follows from any other disjunct.  

Affirmation 1. If disjuncts  u  and  v  are adjacent in regard to the variable  xi  and w = u<xi>v, then the disjunct  
w  is a resolvent of the disjuncts  u  and  v. 

For example, 
                         a        b        c 

                                       u  =   1 0 0 . 1 0 . 0 0 1 1 
                                       v  =   0 1 0 . 0 0 . 0 1 1 0  

It is easy to see that these disjuncts are adjacent in regard to a and also to c, but not to b. Hence, they give 
rise to the following two resolvents 

                               u<a>v  =  0 0 0 . 1 0 . 0 1 1 1      
                               u<c>v  =  1 1 0 . 1 0 . 0 0 1 0 

The direct inference is simple but time-consuming because the number of obtained consequents could be 
very large. The back inference is more efficient. It solves the problem by transforming the initial system of 
disjuncts into such a system which is consistent if and only if d does not follow from D. So, the problem is 
reduced to the regarded above problem of checking some disjunctive matrix for consistency. 
Denoting by ¬ d  the vector obtained from d by its component-wise negation, and by D ∧ ¬ d  the matrix 
obtained from D by the component-wise conjunction of each of its rows with vector  ¬ d , the following rule 
may be formulated.  

Affirmation 2. A disjunct  d  follows from a disjunctive matrix D if and only if the disjunctive matrix  D ∧ ¬ d  is 
not consistent. 

Checking this condition is rather easy: 1s are expelled from all columns of D which correspond to components 
of the vector d having value 1, then the obtained disjunctive matrix is checked for consistency. 
For instance, if 

    0 0 1 . 0 0 1 0 . 0 0 
        D = 1 1 0 . 0 0 1 1 . 0 1  , 
    0 1 0 . 1 1 0 0 . 1 0 
    0 0 1 . 0 1 0 0 . 0 0 
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        d  = 0 1 1 . 1 0 0 0 . 0 0  , 

then the following disjunctive matrix should be checked for consistency 

    0 0 0 . 0 0 1 0 . 0 0 
          D ∧ ¬ d  = 1 0 0 . 0 0 1 1 . 0 1 
    0 0 0 . 0 1 0 0 . 1 0 
    0 0 0 . 0 1 0 0 . 0 1 
This matrix is not consistent, hence the disjunct  d  follows from  D. 
 

CONCLUSION 
Implicative regularities were proposed to fix the knowledge extracted from data on the stage of inductive 
inference and to play the role of axioms on the stage of deductive inference, when the values of goal 
attributes should be forecasted. A set of algorithms was developed to implement those operations. The 
suggested means were used when constructing several expert systems of various purposes where the pattern 
recognition problem was the central one. The computer experiments testified the high efficiency of the 
proposed approach.   
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