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ONE APPROACH FOR THE OPTIMIZATION  
OF ESTIMATES CALCULATING ALGORITHMS 

A.A. Dokukin 
 

Abstract: In this article the new approach for optimization of estimations calculating algorithms is suggested. 
It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for 
pattern recognition 
Keywords: Pattern recognition, estimates calculating algorithms. 
 

Introduction 
This work is made in the context of algebraic approach [1] (in what follows, we use the notation and definitions 
from [1,2]) for pattern recognition. The task of recognition is considered. We have a set M of possible objects. 
It is presumed that nMMM ××= ...1 , there iM  are sets of possible values of i-th feature, and some 
semi-metrics are defined on each of them. The set M is divided into l classes lKK ,...,1 . The task of 
recognition is defined by the conventional learning information )}(),...,(,,...,{ 110 mm SSSSI αα= , and the 
finite sample, ( )ili

iS βββ ,...,)( 1=  of test objects. Here mSS ,...,1  are descriptions of training sequence 

objects ( ) ,,,...,, 21 jijiniii MaaaaS ∈=  njmi ,1,,1 == , and ( )iliiS ααα ,...,)( 1=  are information 

vectors of objects iS , with respect to the properties ( ) ljKSSP jj ,1},{ =∈≡ . Correspondently 

( )ili
jS βββ ,...,)( 1=  are information vectors of jS . 

The task is to find algorithm in the algebraic closure of some set of recognition operators that calculates 
information vector for each qi SS ~

∈ . As such system the defined below class of ECA (estimates calculating 
algorithm) is considered.  
Yu.I. Zhuravlev have proved [1] that there exixts a correct polynomial in the algebraic closure of ECA, i.e. 
polynomial that provides no errors on the control information )}(),...,({,~ 1 qq SSS ββ . 

Estimates calculating algorithm A  is defined as CBA ⋅= , where 
lq

i
jlqij

q SSIB
××

Γ=Γ= )()~,( 0  is 

recognition operator, 
lqijlqijC
××

=Γ β)(  is solving rule. 
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Following notation is used: 

• The j-th class and its addition are denoted as },...,{~
1 mjj SSKK ∩=  and 

jmj KSSKC ~\},...,{~
1= . 
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• Let }{Ω  is the set of all subsets of },...,1{ n . Some subset AΩ  of Ω  is attributed to an algorithm. Its 
elements }{},...,{ 1 Akt t

ii Ω∈=ω  are called support sets and tikit ppp ++= ...)( 1ω  are their 
weights, 0)( ≥tp ω . 

• 0)( ≥iSγ  are weights of training objects. 

• ),( SSB i ωω  is proximity function. We use proximity functions only of the following type. Let 

nεε ,...,1  are non-negative numbers, let also },...,{ 1 iki aaS =ω , },...,{ 1 iki bbS =′ω then 

⎩
⎨
⎧ ≤≤

=′
otherwise

baba
SSB iikikikiiii

,0
),(,....,),(,1

),( 1111 εερερ
ωω .  

),(1),( SSBSSB ii ωωωω −= . 
 

Denote a set of recognition operators by }~{B . Let }~{, BBB ∈′′′ , 
lq

ij
qSIB

×

′Γ=′ )~,( 0 , 

lq
ij

qSIB
×

″Γ=′′ )~,( 0 , b is a scalar. Following operations Bb ′ , BB ′′+′ , BB ′′⋅′  can be defined on this 

set as shown below. 
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q bSIBb
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′Γ=′ )~,)(( 0    (4) 
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″Γ⋅′Γ=′′⋅′ )~,)(( 0    (6) 

 
The closure })~({BM  with respect to operations (4)-(6) is associative algebra with commutative 

multiplication. Operators from })~({BM  can be presented as polynomials of operators from }~{B . If 

})~({BMB∈  then 
tiii BBBB ⋅⋅⋅= ∑ ...

21
. The maximum number of multipliers in its items is called the 

degree of recognition operator. 
The family })({AM  of algorithms CBA ⋅=  such that })~({BMB∈  is called algebraic closure of }{A . 

Finally we will need some more terms from [3] to continue the statement. The informational matrix 
lqji ×,β  is 

considered. Suppose )},{( jiM = , qi ,...,1= , lj ,...,1= , }|),{( , αβα == jijiM , }1,0{∈α .  

Operator })~({BMB∈  is called admissible if there exists at least one pair 1),( Mji ∈  such that for all 
pairs 0),( Mvu ∈  )()( u

v
i

j SS Γ>Γ . This pair is called marked. It is proved also [3] that the greater value 

))()((min),,(
0),(

u
v

i
jMvu

SSBjid Γ−Γ=
∈

 is the smaller degree of item will be needed to construct the correct 

polynomial. 
Thus in order to construct a correct algorithm of minimal complexity or to make inductive procedure of 
constructing it (like for example one in [4]), we need to find the algorithm of maximum ),,( Bjid  in some 
family of algorithms. This article is devoted to solving of maximization task in two particular subsets of ECA. 
 
 
 



International Journal "Information Theories & Applications" Vol.10 

 

465

γ-optimization 

First, denote by γ}{B  the subset of ECA with the following parameters: 

• 1,0 10 == xx , 

• AΩ  consists of all support sets of  equal fixed power k. nikpi ,...,1,1 == , 

• m]1,0[~∈γ , 

• nεε ,...,1  are fixed. 

Let we have 1),( Mji ∈ . The task is to find m]1,0[~* ∈γ  such that 
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As shown in [1], in case of this special format of support vectors, the estimations (1)-(3) can be transformed 
into simple view: 
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Here niSS }1,0{),( ∈δ is the characteristic vector 
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So in the γ}{B family of ECA, the estimation )()( u
v

i
j SS Γ−Γ  is linear function on m]1,0[~∈γ , that is 

)~()()( ,,, γvuji
u

v
i

j LSS =Γ−Γ . So the task transforms into another one, i.e. to find 
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transformed into t tasks of linear programming, there || 0Mt =  (we enumerate all those linear combinations 
as tLL ,...,1  in any order): 
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These tasks can be solved with, for example, simplex method. So the precise solution of the initial task can be 
found. 
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γ,ε-optimization 

The second task is more complex. As in previous chapter we choose parametrical subset εγ ,}{B  of ECA first: 
• 1,0 10 == xx , 
• AΩ  consists of the single support set (the method can be simply generalized to include cases of 

small number of support sets), 
• m]1,0[~∈γ , 
• 0,...,1 ≥nεε . 

 

The task is the same as in previous section, i.e. to find in εγ ,}{B  the algorithm with the maximum value of 
),,( Bjid . 

The algorithm for solving of this task consists of two parts. First one is the construction of auxiliary finite 
system of parallelepipeds P: 

1. Build new sequence of objects },...,{ 1 tSS ′′ : for all jKS ~∈ add differences SS i −  to the 
sequence. 

2. Find the minimal system P of parallelepipeds ],[...],[ 11 nn εεεε −××−  containing all different 
combinations of objects from },...,{ 1 tSS ′′ . 

To construct the system P we must for all subsets },...,{ 1 tSSS ′′⊂  find out if its combination is possible, i.e. 
if there exists any parallelepiped ],[...],[ 11 nnE εεεε −××−=  such that SS ∈′  if and only if ES ∈′ , 
and for all possible combinations add the minimal parallelepiped spanning it to the system. In practice there is 
no need to enumerate all different subsets of },...,{ 1 tSS ′′ . If we have found any impossible one, every 
combination containing it is impossible too. 
The following theorem can be proved: 
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. Indeed for any ε-neighborhood 

],[...],[ 11 nn εεεε −××−  the maximum one from P containing in it will give not more estimations. 
The second part is to calculate estimations themselves and solve the task. From (1)-(3) we have 
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 and the precise solution can be found too. 

Though the solution is precise the necessity to construct system P makes the task extremely difficult with 
multidimensional data. In order to make calculation faster we suggest proximate method for the same task. 
The method starts with the parallelepiped spanning the whole sequence },...,{ 1 tSS ′′ . Then on every step we 
enumerate all admissible combinations of t-1 objects and leave the best one for next step, there we consider 
neighborhood spanning those best combination. Here t is the number of objects in current parallelepiped. The 
best combination is one that maximizes the value of ),,( Bjid . 
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The following diagram shows results of hands-on testing of this method in comparison with the precise one. 
The table of descriptions of forty-eight patients was considered. It consists of three classes of correspondingly 
seventeen, twenty and twelve objects and thirty-three features. As the 1M  in turns every object was 
considered. All other objects from its class were considered as the training sequence. All objects from other 
classes formed 0M . For example the twentieth object generated the following (20-th) test: 

)}2,20{(1 =M  
)}2,48(),...,2,39(),2,38(),2,17(),...,2,2(),2,1{(0 =M  

},...,,,,{},...,{ 37222119181 SSSSSSS t =′′ . 
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It’s easy to see that in most cases the precise solution or solution of acceptable precision has been found. 
And while the precise solution takes about two minutes to find (in case of twenty training objects and the 
difficulty extremely grows with increasing of their number), the proximate algorithm performs all forty-eight 
tests within about ten seconds. 

Conclusion 
In this article we have suggested the new approach for optimization of estimations calculating algorithms. It 
can be used for finding of the correct algorithm of the minimal complexity in the context of the algebraic 
approach for the pattern recognition. 
Also we have considered two parametrical subsets of ECA and have found precise algorithms for solving 
optimization task for them. 
Finally the fast proximate method with acceptable precision has been suggested. 
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