BulDML at Institute of Mathematics and Informatics >
IMI Periodicals >
Pliska Studia Mathematica Bulgarica >
2019 Volume 30 >

Please use this identifier to cite or link to this item:

Title: Inverse Scattering by Obstacles and Santalo’s Formula
Authors: Stoyanov, Luchezar
Keywords: billiard trajectory
scattering by obstacles
travelling time
Santalo’s formula
Issue Date: 2019
Publisher: Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences
Citation: Pliska Studia Mathematica Bulgarica, Vol. 30, No 1, (2019), 185p-200p
Abstract: We consider some problems related to recovering information about an obstacle K in an Euclidean space from certain measurements of lengths of generalized geodesics in the exterior of the obstacle – e.g. sojourn times of scattering rays in the exterior of the obstacle, or simply, travelling times of geodesics within a certain large ball containing the obstacle. It is well-known in scattering theory that this scattering data is related to the singularities of the scattering kernel of the scattering operator for the wave equation in the exterior of K with Dirichlet boundary condition on the boundary. For some classes of obstacles, K can be completely recovered from the scattering data. On the other hand, for some obstacles the set of trapped points is too large and this makes it impossible to recover them from scattering data. We discuss also a certain stability property of the trapping set, which is obtained from a generalisation of Santalo’s formula to integrals over billiard trajectories in the exterior of an obstacle. Some other applications of this formula to scattering by obstacles are discussed as well. 2010 Mathematics Subject Classification: 37D40, 37D50, 53D25, 58J50.
Description: [Stoyanov Luchezar; Стоянов Лъчезар]
ISSN: 0204-9805
Appears in Collections:2019 Volume 30

Files in This Item:

File Description SizeFormat
Pliska-30-2019-185-200.pdf410.68 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0!   Creative Commons License