IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Fractional Calculus and Applied Analysis >
2006 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1271

Title: On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces
Authors: Abdelkefi, Chokri
Sifi, Mohamed
Keywords: Dunkl Transform
Bochner-Riesz Means
Partial Dunkl Integrals
Besov-Dunkl Spaces
44A15
44A35
46E30
Issue Date: 2006
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Fractional Calculus and Applied Analysis, Vol. 9, No 1, (2006), 43p-56p
Abstract: In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.
Description: 2000 Mathematics Subject Classification: 44A15, 44A35, 46E30
URI: http://hdl.handle.net/10525/1271
ISSN: 1311-0454
Appears in Collections:2006

Files in This Item:

File Description SizeFormat
fcaa-vol9-num1-2006-43p-56p.pdf197.99 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback